scholarly journals Prediction of local scour around bridge piers: artificial-intelligence-based modeling versus conventional regression methods

2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Reda Abd El-Hady Rady
2018 ◽  
Author(s):  
H. Omara ◽  
Sherif M. Elsayed ◽  
G. M. Abdeelaal ◽  
Hany F. Abd-Elhamid ◽  
A. Tawfik

1970 ◽  
Vol 96 (8) ◽  
pp. 1742-1747
Author(s):  
L. Veiga Da Cunha
Keyword(s):  

1970 ◽  
Vol 96 (5) ◽  
pp. 1224-1227
Author(s):  
Charles R. Neill
Keyword(s):  

2018 ◽  
Vol 13 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Ibtesam Abudallah Habib ◽  
Wan Hanna Melini Wan Mohtar ◽  
Atef Elsaiad ◽  
Ahmed El-Shafie

This study investigates the performance nose-angle piers as countermeasures for local scour reduction around piers. Four nose angles were studied, i.e., 90°, 70°, 60° and 45° and tested in a laboratory. The sediment size was fixed at 0.39 mm whereas the flow angle of attack (or skew angle) was varied at four angles, i.e., skew angles, i.e., 0°, 10°, 20° and 30°. Scour reduction was clear when decreasing nose angles and reached maximum when the nose angle is 45°. Increasing the flow velocity and skew angle was subsequently increasing the scour profile, both in vertical and transversal directions. However, the efficiency of nose angle piers was only high at low Froude number less than 0.40 where higher Froude number gives minimal changes in the maximum scour depth reduction. At a higher skew angle, although showed promising maximum scour depth reduction, the increasing pier projected width resulted in the increase of transversal lengths.


1970 ◽  
Vol 96 (8) ◽  
pp. 1742-1747
Author(s):  
L. Veiga Da Cunha
Keyword(s):  

1970 ◽  
Vol 96 (7) ◽  
pp. 1638-1639
Author(s):  
Herman N. C. Breusers
Keyword(s):  

1971 ◽  
Vol 97 (9) ◽  
pp. 1513-1517
Author(s):  
Hsieh W. Shen ◽  
Verne R. Schneider ◽  
Susumu Karakl
Keyword(s):  

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1515 ◽  
Author(s):  
Shunyi Wang ◽  
Kai Wei ◽  
Zhonghui Shen ◽  
Qiqi Xiang

Local scour of bridge piers is one of the main threats responsible for bridge damage. Adopting scour countermeasures to protect bridge foundations from scour has become an important issue for the design and maintenance of bridges located in erodible sediment beds. This paper focuses on the protective effect of one active countermeasure named an “anti-scour collar” on local scour around the commonly used cylindrical bridge pier. A cylindrical pier model was set up in a current flume. River sand with a median particle size of 0.324 mm was selected and used as the sediment in the basin. A live-bed scour experimental program was carried out to study the protective effect of an anti-scour collar by comparing the local scour at a cylindrical bridge pier model with and without collar. The effects of three design parameters including collar installation height, collar external diameter and collar protection range, on the scour depth and scour development were investigated parametrically. According to the experimental results, it can be concluded that: the application of an anti-scour collar alleviates the local scour at the pier effectively; and the protection effect decreases with an increase in the collar installation height, but increases with an increase in the collar external diameter and the protection range. Design suggestions for improving the scour protective effect of the anti-scour collar are summarized and of great practical guiding significance to the development of anti-scour collars for bridge piers.


Sign in / Sign up

Export Citation Format

Share Document