Hierarchical Nonlinear Spatio-temporal Agent-Based Models for Collective Animal Movement

2017 ◽  
Vol 22 (3) ◽  
pp. 294-312 ◽  
Author(s):  
Patrick L. McDermott ◽  
Christopher K. Wikle ◽  
Joshua Millspaugh
2010 ◽  
Vol 105 (489) ◽  
pp. 236-248 ◽  
Author(s):  
Mevin B. Hooten ◽  
Christopher K. Wikle

2020 ◽  
Vol 17 (171) ◽  
pp. 20200655
Author(s):  
Otso Ovaskainen ◽  
Panu Somervuo ◽  
Dmitri Finkelshtein

Agent-based models are used to study complex phenomena in many fields of science. While simulating agent-based models is often straightforward, predicting their behaviour mathematically has remained a key challenge. Recently developed mathematical methods allow the prediction of the emerging spatial patterns for a general class of agent-based models, whereas the prediction of spatio-temporal pattern has been thus far achieved only for special cases. We present a general and mathematically rigorous methodology that allows deriving the spatio-temporal correlation structure for a general class of individual-based models. To do so, we define an auxiliary model, in which each agent type of the primary model expands to three types, called the original, the past and the new agents. In this way, the auxiliary model keeps track of both the initial and current state of the primary model, and hence the spatio-temporal correlations of the primary model can be derived from the spatial correlations of the auxiliary model. We illustrate the agreement between analytical predictions and agent-based simulations using two example models from theoretical ecology. In particular, we show that the methodology is able to correctly predict the dynamical behaviour of a host–parasite model that shows spatially localized oscillations.


2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Lennart Adenaw ◽  
Markus Lienkamp

In order to electrify the transport sector, scores of charging stations are needed to incentivize people to buy electric vehicles. In urban areas with a high charging demand and little space, decision-makers are in need of planning tools that enable them to efficiently allocate financial and organizational resources to the promotion of electromobility. As with many other city planning tasks, simulations foster successful decision-making. This article presents a novel agent-based simulation framework for urban electromobility aimed at the analysis of charging station utilization and user behavior. The approach presented here employs a novel co-evolutionary learning model for adaptive charging behavior. The simulation framework is tested and verified by means of a case study conducted in the city of Munich. The case study shows that the presented approach realistically reproduces charging behavior and spatio-temporal charger utilization.


2021 ◽  
Vol 10 (2) ◽  
pp. 88
Author(s):  
Dana Kaziyeva ◽  
Martin Loidl ◽  
Gudrun Wallentin

Transport planning strategies regard cycling promotion as a suitable means for tackling problems connected with motorized traffic such as limited space, congestion, and pollution. However, the evidence base for optimizing cycling promotion is weak in most cases, and information on bicycle patterns at a sufficient resolution is largely lacking. In this paper, we propose agent-based modeling to simulate bicycle traffic flows at a regional scale level for an entire day. The feasibility of the model is demonstrated in a use case in the Salzburg region, Austria. The simulation results in distinct spatio-temporal bicycle traffic patterns at high spatial (road segments) and temporal (minute) resolution. Scenario analysis positively assesses the model’s level of complexity, where the demographically parametrized behavior of cyclists outperforms stochastic null models. Validation with reference data from three sources shows a high correlation between simulated and observed bicycle traffic, where the predictive power is primarily related to the quality of the input and validation data. In conclusion, the implemented agent-based model successfully simulates bicycle patterns of 186,000 inhabitants within a reasonable time. This spatially explicit approach of modeling individual mobility behavior opens new opportunities for evidence-based planning and decision making in the wide field of cycling promotion


Sign in / Sign up

Export Citation Format

Share Document