scholarly journals Fiber-Optic Microstructure Sensors: A Review

2021 ◽  
Vol 11 (2) ◽  
pp. 227-261
Author(s):  
Zengling Ran ◽  
Xiu He ◽  
Yunjiang Rao ◽  
Dong Sun ◽  
Xiaojuan Qin ◽  
...  

AbstractThis paper reviews a wide variety of fiber-optic microstructure (FOM) sensors, such as fiber Bragg grating (FBG) sensors, long-period fiber grating (LPFG) sensors, Fabry-Perot interferometer (FPI) sensors, Mach-Zehnder interferometer (MZI) sensors, Michelson interferometer (MI) sensors, and Sagnac interferometer (SI) sensors. Each FOM sensor has been introduced in the terms of structure types, fabrication methods, and their sensing applications. In addition, the sensing characteristics of different structures under the same type of FOM sensor are compared, and the sensing characteristics of the all FOM sensors, including advantages, disadvantages, and main sensing parameters, are summarized. We also discuss the future development of FOM sensors.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3206 ◽  
Author(s):  
Hsiang-Chang Hsu ◽  
Tso-Sheng Hsieh ◽  
Tzu-Hsuan Huang ◽  
Liren Tsai ◽  
Chia-Chin Chiang

In this study, we applied a double-sided inductively coupled plasma (ICP) process to nanostructure long-period fiber grating (LPFG) in order to fabricate a double-notched LPFG (DNLPFG) sensor with a double-sided surface corrugated periodic grating. Using the sol-gel method, we also added thymol blue and ZnO to form a gas sensing layer, thus producing a DNLPFG CO2 gas sensor. The resulting sensor is the first double-sided etching sensor used to measure CO2. The experimental results showed that as the CO2 concentration increased, the transmission loss increased, and that the smaller the fiber diameter, the greater the sensitivity and the greater the change in transmission loss. When the diameter of the fiber was 32 μm (and the period was 570 μm) and the perfusion rate of CO2 gas was 15%, the maximum loss variation of up to 3.881 dB was achieved, while the sensitivity was 0.2146 dB/% and the linearity was 0.992. These results demonstrate that the DNLPG CO2 gas sensor is highly sensitive.


2014 ◽  
Author(s):  
Satoshi Tanaka ◽  
Osamu Tsukida ◽  
Makoto Takeuchi ◽  
Shingo Tekuramori ◽  
Ryotaro Uchimura ◽  
...  

2012 ◽  
Vol 507 ◽  
pp. 30-33
Author(s):  
Xue Jun Zhang ◽  
Hong Tao Guo

Simultaneous measurement of strain and temperature was demonstrated by using a long-period fiber grating inscribed on a polarization-maintaining fiber. This paper analyses the intersect senstive questions in terms of strain and temperature of fiber optic cable material. It also proposes a new way to carry out simultaneous measurements of strain and temperature. Experimental results show mean square deviations of 15.6 με and 0.7°C for strain and temperature, respectively.


Sign in / Sign up

Export Citation Format

Share Document