Some Generalized Complex Intuitionistic Fuzzy Aggregation Operators and Their Application to Multicriteria Decision-Making Process

2018 ◽  
Vol 44 (3) ◽  
pp. 2679-2698 ◽  
Author(s):  
Harish Garg ◽  
Dimple Rani
2016 ◽  
Vol 15 (02) ◽  
pp. 311-352 ◽  
Author(s):  
Chunqiao Tan ◽  
Xiaohong Chen

Aggregation operators play a key role in multiple criteria decision-making (MCDM). Extensions of aggregation operators to intuitionistic fuzzy sets (IFSs) usually involve replacing the standard arithmetic operations with those defined over the membership and nonmembership of IFS, which is essentially a pair of special Archimedean triangular norm (t-norm) and triangular conorm (t-conorm), called probabilistic sum t-conorm and product t-norm, on the membership and nonmembership of IFS, respectively. In this paper, we first introduce some operations on IFSs by means of Archimedean t-norm and t-conorm. Then some generalized Archimedean intuitionistic fuzzy aggregation operators are proposed, such as generalized Archimedean intuitionistic fuzzy weighted averaging operator, generalized Archimedean intuitionistic fuzzy ordered weighted averaging (GAIFOWA) operator, and generalized Archimedean intuitionistic fuzzy hybird averaging operator. Some desirable properties of these operators are investigated. The relations between these operators and the existing intuitionistic fuzzy aggregation operators are discussed. Finally, applying these proposed operators, we develop an approach for multi-criteria decision-making with intuitionistic fuzzy information, an illustrative example is used to verify the developed approach and to demonstrate its practicality and effectiveness.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Wei Zhou ◽  
Jian-min He

The Bonferroni mean (BM) was introduced by Bonferroni six decades ago but has been a hot research topic recently since its usefulness of the aggregation techniques. The desirable characteristic of the BM is its capability to capture the interrelationship between input arguments. However, the classical BM and GBM ignore the weight vector of aggregated arguments, the general weighted BM (WBM) has not the reducibility, and the revised generalized weighted BM (GWBM) cannot reflect the interrelationship between the individual criterion and other criteria. To deal with these issues, in this paper, we propose the normalized weighted Bonferroni mean (NWBM) and the generalized normalized weighted Bonferroni mean (GNWBM) and study their desirable properties, such as reducibility, idempotency, monotonicity, and boundedness. Furthermore, we investigate the NWBM and GNWBM operators under the intuitionistic fuzzy environment which is more common phenomenon in modern life and develop two new intuitionistic fuzzy aggregation operators based on the NWBM and GNWBM, that is, the intuitionistic fuzzy normalized weighted Bonferroni mean (IFNWBM) and the generalized intuitionistic fuzzy normalized weighted Bonferroni mean (GIFNWBM). Finally, based on the GIFNWBM, we propose an approach to multicriteria decision making under the intuitionistic fuzzy environment, and a practical example is provided to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document