Simplified Analytical Model for Performance Prediction of Multistage Fractured Horizontal Well in Unconventional Tight Gas Reservoirs Considering Non-Darcy Flow in Unstimulated Regions

Author(s):  
Anlun Wang ◽  
Vladimir S. Yakushev ◽  
Jianguang Wei ◽  
Xiaofeng Zhou
2017 ◽  
Vol 24 (2) ◽  
pp. 394-401 ◽  
Author(s):  
Ming-qiang Wei ◽  
Yong-gang Duan ◽  
Wei Chen ◽  
Quan-tang Fang ◽  
Zheng-lan Li ◽  
...  

2011 ◽  
Vol 201-203 ◽  
pp. 399-403 ◽  
Author(s):  
Hong Qing Song ◽  
Ming Yue ◽  
Wei Yao Zhu ◽  
Dong Bo He ◽  
Huai Jian Yi

Porous media containing water is the prerequisite of existence of threshold pressure gradient (TPG) for gas flow. Based on theory of fluid mechanics in porous medium considering TPG, the non-Darcy flow mathematical model is established for formation pressure analysis of water-bearing tight gas reservoirs. It could provide semi-analytic solution of unsteady radial non-Darcy flow. According to the solution of unsteady radial non-Darcy flow, an easy and accurate calculation method for formation pressure analysis is presented. It can provide theoretical foundation for development design of water-bearing tight gas reservoirs. The analysis of calculation results demonstrates that the higher TPG is, the smaller formation pressure of water-bearing tight gas reservoirs spreads. In the same output, the reservoir sweep of non-Darcy gas flow is larger than that of non-Darcy liquid flow. And the pressure drop near wellbore is smaller than that of non-Darcy liquid flow, which is different from Darcy flow.


2016 ◽  
Vol 9 (1) ◽  
pp. 77-90
Author(s):  
Jiao Yuwei ◽  
Xia Jing ◽  
Yan Jianye ◽  
Xu Daicai

Both horizontal well and fractured-horizontal well have been widely used to develop TGRs. However, the costs of horizontal well and fractured-horizontal well are much higher than the vertical well. Therefore, it is necessary to consider the reservoir conditions for evaluating the potential benefit when choosing well pattern or designing well parameters. In this paper, a simulator of simulating the development of TGRs including slippage flow and stress dependence in matrix, and high-velocity non-Darcy flow and stress effect in hydraulic fractures was firstly developed. Then, it was used to study the development effects of different TGRs using different well patterns and well parameters. Based on the simulation results, the incremental ratio models of horizontal well to vertical well and fractured-horizontal well to horizontal well were achieved. These models can be used to predict the incremental production using horizontal well or fractured-horizontal well. We also obtained the plates of choosing well pattern and designing the corresponding parameters to achieve a good profit in the field.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yue Peng ◽  
Tao Li ◽  
Yuxue Zhang ◽  
Yongjie Han ◽  
Dan Wu ◽  
...  

Abstract Multifractured horizontal wells are widely used in the development of tight gas reservoirs to improve the gas production and the ultimate reservoir recovery. Based on the heterogeneity characteristics of the tight gas reservoir, the homogeneous scheme and four typical heterogeneous schemes were established to simulate the production of a multifractured horizontal well. The seepage characteristics and production performance of different schemes were compared and analyzed in detail by the analysis of streamline distribution, pressure distribution, and production data. In addition, the effects of reservoir permeability level, length of horizontal well, and fracture half-length on the gas reservoir recovery were discussed. Results show that the reservoir permeability of the unfractured areas, which are located at both ends of the multifractured horizontal well, determines the seepage ability of the reservoir matrix, showing a significant impact on the long-term gas production. High reservoir permeability level, long horizontal well length, and long fracture half-length can mitigate the negative influence of heterogeneity on the gas production. Our research can provide some guidance for the layout of multifractured horizontal wells and fracturing design in heterogeneous tight gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document