Inequalities for n-class of functions using the Saigo fractional integral operator

Author(s):  
Hasib Khan ◽  
Cemil Tunç ◽  
Dumitru Baleanu ◽  
Aziz Khan ◽  
Abdulwasea Alkhazzan
Author(s):  
B. Bayraktar ◽  
S.I. Butt ◽  
Sh. Shaokat ◽  
J.E. Nápoles Valdés

The article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.


Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5595-5609
Author(s):  
Erhan Set

Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann-Liouville fractional integral operator involving a class of functions defined formally by F? ?,?(x)=??,k=0 ?(k)/?(?k + ?)xk. Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators.


Author(s):  
B. Bayraktar ◽  
S.I. Butt ◽  
Sh. Shaokat ◽  
J.E. Napoles Valdes

The article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.


Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


2009 ◽  
Vol 80 (2) ◽  
pp. 324-334 ◽  
Author(s):  
H. GUNAWAN ◽  
Y. SAWANO ◽  
I. SIHWANINGRUM

AbstractWe discuss here the boundedness of the fractional integral operatorIαand its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness ofIα, we employ the boundedness of the so-called maximal fractional integral operatorIa,κ*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 504 ◽  
Author(s):  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

In this present paper we study the non-local Hadmard proportional integrals recently proposed by Rahman et al. (Advances in Difference Equations, (2019) 2019:454) which containing exponential functions in their kernels. Then we establish certain new weighted fractional integral inequalities involving a family of n ( n ∈ N ) positive functions by utilizing Hadamard proportional fractional integral operator. The inequalities presented in this paper are more general than the inequalities existing in the literature.


Sign in / Sign up

Export Citation Format

Share Document