A note on fractional integral operator associated with multiindex Mittag-Leffler functions

Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.

2004 ◽  
Vol 35 (1) ◽  
pp. 13-22
Author(s):  
V. B. L. Chaurasia ◽  
Vijay Kumar Singhal

We derive an Eulerian integral and a main theorem based upon the fractional integral operator associated with generalized polynomials given by Srivastava [8. 185, Eq.~(7)] and $H$-function of several complex variables given by Srivastava and Panda [11, p.271, Eq.~(4.1)] which provide unification and extension of numerous results in the theory of fractional calculus of special functions in one and more variables. Certain interesting sepcial cases (known and new) have also been discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qi Li ◽  
Muhammad Shoaib Saleem ◽  
Peiyu Yan ◽  
Muhammad Sajid Zahoor ◽  
Muhammad Imran

The theory of convex functions plays an important role in the study of optimization problems. The fractional calculus has been found the best to model physical and engineering processes. The aim of this paper is to study some properties of strongly convex functions via the Caputo–Fabrizio fractional integral operator. In this paper, we present Hermite–Hadamard-type inequalities for strongly convex functions via the Caputo–Fabrizio fractional integral operator. Some new inequalities of strongly convex functions involving the Caputo–Fabrizio fractional integral operator are also presented. Moreover, we present some applications of the proposed inequalities to special means.


Author(s):  
Dagnachew Jenber ◽  
Mollalign Haile ◽  
Adamu Gizachew

This paper presents Chebyshev Type inequalities for the Riemann-Liouville variable-order fractional integral operator using two synchronous functions on the set of real numbers. It is the first result of its kind in the current literature using variable-order Riemann-Liouville fractional integral operator. Some special cases for the result obtained in the paper are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiaobin Wang ◽  
Muhammad Shoaib Saleem ◽  
Kiran Naseem Aslam ◽  
Xingxing Wu ◽  
Tong Zhou

The theory of convex functions plays an important role in engineering and applied mathematics. The Caputo–Fabrizio fractional derivatives are one of the important notions of fractional calculus. The aim of this paper is to present some properties of Caputo–Fabrizio fractional integral operator in the setting of h -convex function. We present some new Caputo–Fabrizio fractional estimates from Hermite–Hadamard-type inequalities. The results of this paper can be considered as the generalization and extension of many existing results of inequalities and convex functions. Moreover, we also present some application of our results to special means of real numbers.


Author(s):  
Shin Min Kang ◽  
Ghulam Abbas ◽  
Ghulam Farid ◽  
Waqas Nazeer

In the present research, we will develop some integral inequalities of Hermite Hadamard type for differentiable η-convex function. Moreover, our results include several new and known results as special cases.


Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5595-5609
Author(s):  
Erhan Set

Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann-Liouville fractional integral operator involving a class of functions defined formally by F? ?,?(x)=??,k=0 ?(k)/?(?k + ?)xk. Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators.


2022 ◽  
Vol 40 ◽  
pp. 1-10
Author(s):  
Dinesh Kumar ◽  
Frederic Ayant

In this paper we study a pair of unied and extended fractional integral operator involving the multivariable Aleph-function, Aleph-function and general class of polynomials. During this study, we establish ve theorems pertaining to Mellin transforms of these operators. Furthers, some properties of these operators have also been investigated. On account of the general nature of the functions involved herein, a large number of (known and new) fractional integral operators involved simpler functions can also be obtained . We will quote the particular case concerning the multivariable I-function dened by Sharma and Ahmad [20] and the I-function of one variable dened by Saxena [13].


2019 ◽  
Vol 15 (2) ◽  
pp. 61-73
Author(s):  
D. Kumar ◽  
F. Y. Ayant

Abstract In this paper, we study a pair of unified and extended fractional integral operator involving the multivariable I-functions and general class of multivariable polynomials. Here, we use Mellin transforms to obtain our main results. Certain properties of these operators concerning to their Mellin-transforms have been investigated. On account of the general nature of the functions involved herein, a large number of known (may be new also) fractional integral operators involved simpler functions can be obtained. We will also quote the particular case of the multivariable H-function.


Author(s):  
Saima Rashid ◽  
Farhat Safdar ◽  
Ahmet Ocak Akdemir ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractIn the article, we establish some new general fractional integral inequalities for exponentially m-convex functions involving an extended Mittag-Leffler function, provide several kinds of fractional integral operator inequalities and give certain special cases for our obtained results.


Sign in / Sign up

Export Citation Format

Share Document