scholarly journals New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.

Author(s):  
Shin Min Kang ◽  
Ghulam Abbas ◽  
Ghulam Farid ◽  
Waqas Nazeer

In the present research, we will develop some integral inequalities of Hermite Hadamard type for differentiable η-convex function. Moreover, our results include several new and known results as special cases.


Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5595-5609
Author(s):  
Erhan Set

Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann-Liouville fractional integral operator involving a class of functions defined formally by F? ?,?(x)=??,k=0 ?(k)/?(?k + ?)xk. Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators.


Author(s):  
Saima Rashid ◽  
Farhat Safdar ◽  
Ahmet Ocak Akdemir ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractIn the article, we establish some new general fractional integral inequalities for exponentially m-convex functions involving an extended Mittag-Leffler function, provide several kinds of fractional integral operator inequalities and give certain special cases for our obtained results.


Author(s):  
B. Bayraktar ◽  
S.I. Butt ◽  
Sh. Shaokat ◽  
J.E. Nápoles Valdés

The article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.


Author(s):  
B. Bayraktar ◽  
S.I. Butt ◽  
Sh. Shaokat ◽  
J.E. Napoles Valdes

The article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq A. Aljaaidi ◽  
Deepak B. Pachpatte ◽  
Wasfi Shatanawi ◽  
Mohammed S. Abdo ◽  
Kamaleldin Abodayeh

AbstractIn this research paper, we improve some fractional integral inequalities of Minkowski-type. Precisely, we use a proportional fractional integral operator with respect to another strictly increasing continuous function ψ. The functions used in this work are bounded by two positive functions to get reverse Minkowski inequalities in a new sense. Moreover, we introduce new fractional integral inequalities which have a close relationship to the reverse Minkowski-type inequalities via ψ-proportional fractional integral, then with the help of this fractional integral operator, we discuss some new special cases of reverse Minkowski-type inequalities through this work. An open issue is covered in the conclusion section to extend the current findings to be more general.


2021 ◽  
Vol 5 (4) ◽  
pp. 252
Author(s):  
Humaira Kalsoom ◽  
Miguel Vivas-Cortez ◽  
Muhammad Amer Latif ◽  
Hijaz Ahmad

In this paper, we establish a new version of Hermite-Hadamard-Fejér type inequality for harmonically convex functions in the form of weighted fractional integral. Secondly, an integral identity and some weighted midpoint fractional Hermite-Hadamard-Fejér type integral inequalities for harmonically convex functions by involving a positive weighted symmetric functions have been obtained. As shown, all of the resulting inequalities generalize several well-known inequalities, including classical and Riemann–Liouville fractional integral inequalities.


Analysis ◽  
2021 ◽  
Vol 41 (1) ◽  
pp. 61-67
Author(s):  
Kamlesh Jangid ◽  
S. D. Purohit ◽  
Kottakkaran Sooppy Nisar ◽  
Serkan Araci

Abstract In this paper, we derive certain Chebyshev type integral inequalities connected with a fractional integral operator in terms of the generalized Mittag-Leffler multi-index function as a kernel. Our key findings are general in nature and, as a special case, can give rise to integral inequalities of the Chebyshev form involving fractional integral operators present in the literature.


Sign in / Sign up

Export Citation Format

Share Document