Strong convergence analysis of common variational inclusion problems involving an inertial parallel monotone hybrid method for a novel application to image restoration

Author(s):  
Watcharaporn Cholamjiak ◽  
Suhel Ahmad Khan ◽  
Damrongsak Yambangwai ◽  
Kaleem Raza Kazmi
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1161
Author(s):  
Jinhua Zhu ◽  
Jinfang Tang ◽  
Shih-sen Chang ◽  
Min Liu ◽  
Liangcai Zhao

In this paper, we introduce an iterative algorithm for finding a common solution of a finite family of the equilibrium problems, quasi-variational inclusion problems and fixed point problem on Hadamard manifolds. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in literature.


Author(s):  
Suhel Ahmad Khan ◽  
Kaleem Raza Kazmi ◽  
Watcharaporn Cholamjiak ◽  
Hemen Dutta

We prove a strong convergence theorem for finding a common solution of a combination of equilibrium problems and the set of fixed points of a k-nonspreading multi-valued mapping by using shrinking projection hybrid method. Further, we give a numerical example to justify our main result and compare the shrinking areas of solution set after randomization.


Sign in / Sign up

Export Citation Format

Share Document