scholarly journals Pietsch’s variants of s-numbers for multilinear operators

Author(s):  
D. L. Fernandez ◽  
M. Mastyło ◽  
E. B. Silva

AbstractWe study variants of s-numbers in the context of multilinear operators. The notion of an $$s^{(k)}$$ s ( k ) -scale of k-linear operators is defined. In particular, we shall deal with multilinear variants of the $$s^{(k)}$$ s ( k ) -scales of the approximation, Gelfand, Hilbert, Kolmogorov and Weyl numbers. We investigate whether the fundamental properties of important s-numbers of linear operators are inherited to the multilinear case. We prove relationships among some $$s^{(k)}$$ s ( k ) -numbers of k-linear operators with their corresponding classical Pietsch’s s-numbers of a generalized Banach dual operator, from the Banach dual of the range space to the space of k-linear forms, on the product of the domain spaces of a given k-linear operator.

2016 ◽  
Vol 66 (1) ◽  
Author(s):  
G. Murugusundaramoorthy ◽  
K. Thilagavathi

AbstractThe main object of this present paper is to investigate the problem of majorization of certain class of analytic functions of complex order defined by the Dziok-Raina linear operator. Moreover we point out some new or known consequences of our main result.


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


1969 ◽  
Vol 16 (3) ◽  
pp. 227-232 ◽  
Author(s):  
J. C. Alexander

In (4) Vala proves a generalization of Schauder's theorem (3) on the compactness of the adjoint of a compact linear operator. The particular case of Vala's result that we shall be concerned with is as follows. Let t1 and t2 be non-zero bounded linear operators on the Banach spaces Y and X respectively, and denote by 1T2 the operator on B(X, Y) defined by


1970 ◽  
Vol 13 (1) ◽  
pp. 39-45
Author(s):  
Chia-Shiang Lin

Cordes and Labrousse ([2] p. 697), and Kaniel and Schechter ([6] p. 429) showed that if S and T are domain-dense closed linear operators on a Hilbert space H into itself, the range of S is closed in H and the codimension of the range of S is finite, then, (TS)* = S*T*. With a somewhat different approach and more restricted condition on S, the same assertion was obtained by Holland [5] recently, that S is a bounded everywhere-defined linear operator whose range is a closed subspace of finite codimension in H.


1993 ◽  
Vol 16 (4) ◽  
pp. 823-824
Author(s):  
Yun Sung Choi ◽  
Sung Guen Kim

LetEandFbe Banach spaces with equivalent normalized unconditional bases. In this note we show that a bounded diagonal linear operatorT:E→Fis compact if and only if its entries tend to0, using the concept of weak uniform continuity.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 312 ◽  
Author(s):  
LeRoy Beasley ◽  
Jeong Kim ◽  
Seok-Zun Song

A graph has genus k if it can be embedded without edge crossings on a smooth orientable surface of genus k and not on one of genus k − 1 . A mapping of the set of graphs on n vertices to itself is called a linear operator if the image of a union of graphs is the union of their images and if it maps the edgeless graph to the edgeless graph. We investigate linear operators on the set of graphs on n vertices that map graphs of genus k to graphs of genus k and graphs of genus k + 1 to graphs of genus k + 1 . We show that such linear operators are necessarily vertex permutations. Similar results with different restrictions on the genus k preserving operators give the same conclusion.


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


1992 ◽  
Vol 9 (5) ◽  
pp. 427-443 ◽  
Author(s):  
David J. Heeger

AbstractSimple cells in striate cortex have been depicted as rectified linear operators, and complex cells have been depicted as energy mechanisms (constructed from the squared sums of linear operator outputs). This paper discusses two essential hypotheses of the linear/energy model: (1) that a cell's selectivity is due to an underlying (spatiotemporal and binocular) linear stage; and (2) that a cell's firing rate depends on the squared output of the underlying linear stage. This paper reviews physiological measurements of cat striate cell responses, and concludes that both of these hypotheses are supported by the data.


1993 ◽  
Vol 113 (1) ◽  
pp. 161-172
Author(s):  
H. G. Dales ◽  
A. Millinoton

The theory of translation-invariant operators on various spaces of functions (or measures or distributions) is a well-trodden field. The problem is to decide, first, whether or not a linear operator between two function spaces on, say, ℝ or ℝ+ which commutes with one or many translations on the two spaces is necessarily continuous, and, second, to give a canonical form for all such continuous operators. In some cases each such operator is zero. The second problem is essentially the ‘multiplier problem’, and it has been extensively discussed; see [7], for example.


1971 ◽  
Vol 23 (1) ◽  
pp. 132-150 ◽  
Author(s):  
Bernard Niel Harvey

In this paper we represent certain linear operators in a space with indefinite metric. Such a space may be a pair (H, B), where H is a separable Hilbert space, B is a bilinear functional on H given by B(x, y) = [Jx, y], [, ] is the Hilbert inner product in H, and J is a bounded linear operator such that J = J* and J2 = I. If T is a linear operator in H, then ‖T‖ is the usual operator norm. The operator J above has two eigenspaces corresponding to the eigenvalues + 1 and –1.In case the eigenspace in which J induces a positive operator has finite dimension k, a general spectral theory is known and has been developed principally by Pontrjagin [25], Iohvidov and Kreĭn [13], Naĭmark [20], and others.


Sign in / Sign up

Export Citation Format

Share Document