Rouge Wave, W-Shaped, Bright, and Dark Soliton Solutions for a Generalized Quasi-1D Bose–Einstein Condensate System with Local M-Derivative

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Abass H. Abdel Kader ◽  
Mohamed S. Abdel Latif ◽  
Dumitru Baleanu
2020 ◽  
Vol 34 (26) ◽  
pp. 2050282 ◽  
Author(s):  
Xin Zhao ◽  
Bo Tian ◽  
Qi-Xing Qu ◽  
Yu-Qiang Yuan ◽  
Xia-Xia Du ◽  
...  

Investigation in this paper is the spatially modulated two-component GP system with Rabi coupling in a Bose–Einstein condensate consisting of the two hyperfine states. Based on the Kadomtsev–Petviashvili hierarchy reduction, we derive the Gramian expression of the one- and two-dark–dark soliton solutions. The nonlinearity coefficients [Formula: see text] and the external spatially varying trapping potential [Formula: see text] can be constrained as the functions of [Formula: see text], where [Formula: see text] is the spatial coordinate, [Formula: see text] is the time coordinate, [Formula: see text] is the dispersion parameter. With the Rabi coupling coefficient [Formula: see text] increasing, period along [Formula: see text] decreases. When [Formula: see text] is a constant, soliton propagates stably with the amplitude and velocity unvarying; When [Formula: see text] is a function of [Formula: see text], background is periodic and velocity of the soliton varies with [Formula: see text] increasing. Head-on and overtaking elastic interactions between the two solitons are presented analytically and graphically.


2012 ◽  
Vol 67 (10-11) ◽  
pp. 525-533
Author(s):  
Zhi-Qiang Lin ◽  
Bo Tian ◽  
Ming Wang ◽  
Xing Lu

Under investigation in this paper is a variable-coefficient coupled Gross-Pitaevskii (GP) system, which is associated with the studies on atomic matter waves. Through the Painlev´e analysis, we obtain the constraint on the variable coefficients, under which the system is integrable. The bilinear form and multi-soliton solutions are derived with the Hirota bilinear method and symbolic computation. We found that: (i) in the elastic collisions, an external potential can change the propagation of the soliton, and thus the density of the matter wave in the two-species Bose-Einstein condensate (BEC); (ii) in the shape-changing collision, the solitons can exchange energy among different species, leading to the change of soliton amplitudes.We also present the collisions among three solitons of atomic matter waves.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450026 ◽  
Author(s):  
ZHI-GANG LIU ◽  
XIAO-XIAO MA

In this paper, we study on breathers of Bose–Einstein condensate analytically in a time-dependent parabolic trap with a complex potential. It is found that the breather can be reflected by the parabolic potential or split into many humps and valleys with the time evolution. The nonlinear tunneling behavior of breather colliding on the parabolic potential is observed. The results provide many possibilities to manipulate breather experimentally in the condensate system.


2007 ◽  
Author(s):  
N. A. Kostov ◽  
V. A. Atanasov ◽  
V. S. Gerdjikov ◽  
G. G. Grahovski

Sign in / Sign up

Export Citation Format

Share Document