parabolic potential
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 45)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 1048 ◽  
pp. 205-211
Author(s):  
Hoang Van Ngoc

Conductivity tensor is an important concept in materials, this work studies conductivity tensors in cylindrical quantum wires with parabolic potential in the presence of two external fields, a linearly polarized electromagnetic wave, and a laser field. This work is also only considered for the case of electron-acoustic phonon scattering. Research results are obtained by using quantum kinetic equations for the carrier system in a quantum wire. The conductivity tensor is calculated by solving the quantum kinetic equation of the system, which is a function of the external field frequency, the external field amplitude, the temperature of the helium, and parameters specific to the quantum wire. Results will also be examined and plotted for quantum wire GaAs / GaAsAl.


Author(s):  
Saren Gaowa ◽  
Yan-Bo Geng ◽  
Zhao-Hua Ding ◽  
Jing-Lin Xiao

In this research, the effects of magnetism and parabolic potential on strongly coupled polaron characteristics within asymmetric Gaussian quantum wells (AGQWs) were investigated. To do so, the following six parameters were studied, temperature, AGQW barrier height, Gaussian confinement potential (GCP) width, confinement strengths along the directions of [Formula: see text] and [Formula: see text], as well as magnetic field cyclotron frequency. The relationships among frequency oscillation, AGQW parameters and polaron ground state energy in RbCl crystal were studied based on linear combination operator and Lee–Low–Pines unitary transformation. It was concluded that ground state energy absolute value was decreased by increasing GCP width and temperature, and increased with the increase of confinement strength along [Formula: see text] and [Formula: see text] directions, cyclotron frequency of magnetic field and barrier height of AGQW. It was also found that vibrational frequency was increased by enhancing confinement strengths along the directions of [Formula: see text] and [Formula: see text], magnetic field cyclotron frequencies, barrier height AGQW and temperature and decreased with the increase of GCP width.


Author(s):  
Jing-Hong Mei ◽  
Jing-Lin Xiao ◽  
Yong Sun ◽  
Bin Zhang ◽  
Xiu-Juan Miao ◽  
...  

Anisotropy parabolic potential (APP) effects on ground state (GS) energy [Formula: see text] and the vibration frequency (VF) [Formula: see text] of weak-coupled magnetopolaron (MP) in asymmetric Gaussian quantum wells (AGQWs) were investigated using the linear combination operator and unitary transformation method. The obtained results showed that [Formula: see text] and [Formula: see text] were increased by increasing the barrier height [Formula: see text] of AGQWs as well as transverse and longitudinal confined strengths [Formula: see text] and [Formula: see text] of APP and decreased with increase in the asymmetric Gaussian confinement potential (AGCP) range [Formula: see text] and transverse and longitudinal effective confined lengths [Formula: see text] and [Formula: see text] of APP. Thus, the GS energy and VF of MP could be changed by adjusting the confinement parameters of the APP and AGCP. The study of quantum wells’ semiconductor materials has broad potential applications in semiconductor lasers, optoelectronic devices and quantum information.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012077
Author(s):  
V Chistyakov

Abstract Nonstationary Schroedinger equation (NSE) is solved analytically and numerically to study a phenomenon of dynamical stabilization of the inverted oscillator driven by polyharmonic in time and spatially uniform force with specially chosen phase shifts. It is shown that for Gaussian wave packet asymptotically fitting the initial condition (IC) it occurs temporary delay of the packet center about top of the parabolic potential for about 2 fundamental time periods followed by the center bifurcation.


2021 ◽  
pp. 2100037
Author(s):  
Inna O. Lebedeva ◽  
Ekaterina B. Zhulina ◽  
Frans A.M. Leermakers ◽  
Sergei S. Sheiko ◽  
Oleg V. Borisov

2021 ◽  
Author(s):  
Dung Nguyen Tien ◽  
Thuy Do Thanh ◽  
Trung Le Canh

Abstract We present a theoretical study of the kinetic equation for acoustic phonons in semiconductor quantum well with parabolic potential well under intense laser field. Using this method, we find the expression for the phonon rate coefficient for the general case, the condition of the acoustic phonon rate and the influence of the parameters of laser on this rate coefficient. We numerically calculate the rate of acoustic phonon excitation by the absorption of laser field energy at different temperature.


Sign in / Sign up

Export Citation Format

Share Document