scholarly journals Elevated recapping behaviour and reduced Varroa destructor reproduction in natural Varroa resistant Apis mellifera honey bees from the UK

Apidologie ◽  
2021 ◽  
Author(s):  
George Peter Hawkins ◽  
Stephen John Martin

Abstract Varroa destructor mites remain a major threat to Apis mellifera honey bees, yet many populations across the world have naturally evolved survivorship to infestation. Here, we investigated the roles of recapping and mite reproduction in natural Varroa resistant (NVR) colonies in the UK. Recapping frequency was higher in NVR colonies and targeted mite-infested cells in which the recapped diameters were larger. Mite reproduction was lower in NVR colonies due to increased offspring mortality, although recapping is unlikely the primary mechanism responsible. In an additional small experiment, infested brood removal was immediately present in naïve colonies, and recapping increased rapidly following initial mite exposure. Targeted recapping behaviour is a common trait in NVR colonies and may provide a useful indicator for mite resistance. In addition, reduced mite reproduction is a key resistance mechanism in NVR colonies in the UK, as also found in Europe, S. Africa, Brazil and Mexico.

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


Parasitology ◽  
2018 ◽  
Vol 145 (12) ◽  
pp. 1633-1639 ◽  
Author(s):  
Beatrice T. Nganso ◽  
Ayuka T. Fombong ◽  
Abdullahi A. Yusuf ◽  
Christian W. W. Pirk ◽  
Charles Stuhl ◽  
...  

AbstractAlthough Varroa destructor is the most serious ecto-parasite to the honeybee, Apis mellifera L., some honeybee populations such as Apis mellifera scutellata in Kenya can survive mite infestations without treatment. Previously, we reported that grooming behaviour could be a potential tolerant mechanism expressed by this honeybee subspecies towards mite infestation. However, both hygienic and grooming behaviours could not explain the lower mite-infestation levels recorded in these colonies. Here, we investigated the involvement of other potential resistant mechanisms including suppression of mite reproduction in worker brood cells of A. m. scutellata to explain the low mite numbers in their colonies. High infertility rates (26–27%) and percentages of unmated female offspring (39–58%) as well as low fecundity (1.7–2.2, average offspring produced) were identified as key parameters that seem to interact with one another during different seasons to suppress mite reproduction in A. m. scutellata colonies. We also identified offspring mortality in both sexes and absence of male offspring as key factors accounting for the low numbers of mated daughter mites produced in A. m. scutellata colonies. These results suggest that reduced mite reproductive success could explain the slow mite population growth in A. m. scutellata colonies.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223236 ◽  
Author(s):  
Haftom Gebremedhn ◽  
Bezabeh Amssalu ◽  
Lina De Smet ◽  
Dirk C. de Graaf

2015 ◽  
Vol 126 ◽  
pp. 12-20 ◽  
Author(s):  
Mollah Md. Hamiduzzaman ◽  
Ernesto Guzman-Novoa ◽  
Paul H. Goodwin ◽  
Mariana Reyes-Quintana ◽  
Gun Koleoglu ◽  
...  

2014 ◽  
Vol 61 (3) ◽  
pp. 207-215 ◽  
Author(s):  
E. Zakar ◽  
A. Jávor ◽  
Sz. Kusza

2011 ◽  
Vol 54 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Masoud M. Ardestani ◽  
Rahim Ebadi ◽  
Gholamhossein Tahmasbi

Apidologie ◽  
2003 ◽  
Vol 34 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Ingemar Fries ◽  
Henrik Hansen ◽  
Anton Imdorf ◽  
Peter Rosenkranz

2018 ◽  
Author(s):  
Tim Regan ◽  
Mark W. Barnett ◽  
Dominik R. Laetsch ◽  
Stephen J. Bush ◽  
David Wragg ◽  
...  

AbstractThe European honey bee (Apis mellifera) plays a major role in pollination and food production, but is under threat from emerging pathogens and agro-environmental insults. As with other organisms, honey bee health is a complex product of environment, host genetics and associated microbes (commensal, opportunistic and pathogenic). Improved understanding of bee genetics and their molecular ecology can help manage modern challenges to bee health and production. Sampling bee and cobiont genomes, we characterised the metagenome of 19 honey bee colonies across Britain. Low heterozygosity was observed in bees from many Scottish colonies, sharing high similarity to the native dark bee, A. mellifera mellifera. Apiaries exhibited high diversity in the composition and relative abundance of individual microbiome taxa. Most non-bee sequences derived from known honey bee commensal bacteria or known pathogens, e.g. Lotmaria passim (Trypanosomatidae), and Nosema spp. (Microsporidia). However, DNA was also detected from numerous additional bacterial, plant (food source), protozoan and metazoan organisms. To classify sequences from cobionts lacking genomic information, we developed a novel network analysis approach clustering orphan contigs, allowing the identification of a pathogenic gregarine. Our analyses demonstrate the power of high-throughput, directed metagenomics in agroecosystems identifying potential threats to honey bees present in their microbiota.


Sign in / Sign up

Export Citation Format

Share Document