scholarly journals Climate, plant organs and species control dissolved nitrogen and phosphorus in fresh litter in a subalpine forest on the eastern Tibetan Plateau

2018 ◽  
Vol 75 (2) ◽  
Author(s):  
Yu Zhang ◽  
Jiaping Yang ◽  
Wanqin Yang ◽  
Bo Tan ◽  
Changkun Fu ◽  
...  
2016 ◽  
Author(s):  
Jinniu Wang ◽  
Bo Xu ◽  
Yan Wu ◽  
Jing Gao ◽  
Fusun Shi

Abstract. Litters of reproductive organs have been rarely studied, despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. Carbon, nitrogen, phosphorus, lignin, cellulose, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on soil nutrition pool by comparison between the treated and control samples. Litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10%–40% of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C/N, N/P, lignin/N, and lignin and cellulose concentrations than leaf litter. Flower litter fed soil nutrition pool more efficiently because of their faster decomposition rate and higher nutrient contents. Litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decomposes approximately three times faster than mixed litters within 50 days. Moreover, the findings of the pot experiment indicated that flower litter addition significantly increased the available nutrient pool. Flower litter influenced nutrition cycling in alpine ecosystems, as evident by its non-ignorable production and significantly faster decomposition. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.


2012 ◽  
Vol 27 (2) ◽  
pp. 453-465 ◽  
Author(s):  
JuHong Wang ◽  
Wen Chen ◽  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
XianLiang Cui ◽  
...  

Ecosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. e02432
Author(s):  
Jiaping Yang ◽  
Yu Zhang ◽  
Wanqin Yang ◽  
Bo Tan ◽  
Kai Yue ◽  
...  

Soil Research ◽  
2014 ◽  
Vol 52 (6) ◽  
pp. 562 ◽  
Author(s):  
Zhenfeng Xu ◽  
Qing Liu ◽  
Huajun Yin

Intact soil cores from two adjacent forest ecosystems (natural coniferous forest and dragon spruce plantation) were incubated in the laboratory to examine effects of temperature, reforestation and their interactions on rates of nitrogen (N) mineralisation, nitrification and ammonification in the subalpine forest of the eastern Tibetan Plateau. Two contrasting soils were incubated at five temperatures (–5, 0, 5, 15 and 25°C) for 4 weeks. Rates of N mineralisation and nitrification were insensitive to temperature at lower temperatures (0°C and 5°C) but increased over higher temperatures (15°C and 25°C). Large amounts of ammonium were released for each incubation time in both soils when the incubation temperature was –5°C. Therefore, the rates of mineralisation and ammonification at –5°C were significantly higher than at the other temperatures. Both the accumulations of inorganic N and rates of N transformation were significantly higher in the natural forest than in the plantation. Moreover, temperature sensitivity of net nitrification and N mineralisation were greater in the natural forest than the spruce plantation. Effects of temperature on accumulations of inorganic N and rates of N transformation were dependent on incubation time and forest ecosystem. Our results suggested that –5°C might be a key low temperature for N mineralisation in subalpine forest on the eastern Tibetan Plateau; the effect of projected warming on soil N transformation rate may be less significant in plantation forests than natural forests in this specific region.


2014 ◽  
Vol 11 (22) ◽  
pp. 6471-6481 ◽  
Author(s):  
W. Fuzhong ◽  
P. Changhui ◽  
Z. Jianxiao ◽  
Z. Jian ◽  
T. Bo ◽  
...  

Abstract. Carbon (C) release from foliar litter is a primary component in C exchange among the atmosphere, vegetation, soil and water from respiration and leaching, but little information is currently related to the effects of freezing and thawing dynamics on C release of foliar litter in cold regions. A 2-year field litter decomposition experiment was conducted along an altitudinal gradient (~ 2700 to ~ 3600 m) to mimic temperature increases in the eastern Tibetan Plateau. C release was investigated for fresh foliar litter of spruce, fir and birch. The onset of the frozen stage, deep frozen stage and thawing stage was partitioned according to changes in the freezing and thawing dynamics of each winter. More rapid 2-year C released from fresh foliar litter at upper elevations compared to lower elevations in the alpine/subalpine region. However, high C release was observed at low altitudes during winter stages, but high altitudes exhibited high C release during growing season stages. The deep frozen stage showed higher rates of C release than other stages in the second year of decomposition. Negative-degree days showing freezing degrees were correlated to C release rates for the deep frozen stages in both years, and this relationship continued for the duration of the experiment, indicating that changes in freezing can directly modify C release from foliar litter. The results suggested that the changed freezing and thawing dynamics could delay the onset of C release in fresh litter in this cold region in the scenario of climate warming.


2014 ◽  
Vol 11 (6) ◽  
pp. 9539-9564 ◽  
Author(s):  
F. Wu ◽  
C. Peng ◽  
J. Zhu ◽  
J. Zhang ◽  
B. Tan ◽  
...  

Abstract. Carbon (C) release from foliar litter is a primary component in C exchange between the atmosphere and terrestrial ecosystems, but little information is currently related to the effects of freezing and thawing dynamics on C release of foliar litter in cold regions. A two-year field litter decomposition experiment was conducted along an altitudinal gradient (∼2700 m to ∼3600 m) to mimic temperature increases in the eastern Tibetan Plateau. C release was investigated for fresh foliar litter of spruce, fir and birch. The onset of the frozen stage, deep frozen stage, and thawing stage were partitioned according to changes in freezing and thawing dynamics of each winter. High C release was observed in lower altitudes during winter stages, but higher altitudes exhibited high C release during growing season stages. The deep frozen stage showed higher rates of C release than other stages in the second year of decomposition. Negative degree-days showing freezing degree were correlated to C release rates for the deep frozen stages in both years, and this relationship continued for the duration of the experiment, indicating that changes in freezing can directly modify C release from foliar litter. The results suggested that climate warming could delay the onset of C release in fresh litter in this cold region.


Sign in / Sign up

Export Citation Format

Share Document