Solving multistage quantified linear optimization problems with the alpha–beta nested Benders decomposition

2015 ◽  
Vol 3 (4) ◽  
pp. 349-370 ◽  
Author(s):  
Ulf Lorenz ◽  
Jan Wolf
Author(s):  
Álinson S. Xavier ◽  
Ricardo Fukasawa ◽  
Laurent Poirrier

When generating multirow intersection cuts for mixed-integer linear optimization problems, an important practical question is deciding which intersection cuts to use. Even when restricted to cuts that are facet defining for the corner relaxation, the number of potential candidates is still very large, especially for instances of large size. In this paper, we introduce a subset of intersection cuts based on the infinity norm that is very small, works for relaxations having arbitrary number of rows and, unlike many subclasses studied in the literature, takes into account the entire data from the simplex tableau. We describe an algorithm for generating these inequalities and run extensive computational experiments in order to evaluate their practical effectiveness in real-world instances. We conclude that this subset of inequalities yields, in terms of gap closure, around 50% of the benefits of using all valid inequalities for the corner relaxation simultaneously, but at a small fraction of the computational cost, and with a very small number of cuts. Summary of Contribution: Cutting planes are one of the most important techniques used by modern mixed-integer linear programming solvers when solving a variety of challenging operations research problems. The paper advances the state of the art on general-purpose multirow intersection cuts by proposing a practical and computationally friendly method to generate them.


2007 ◽  
Vol 49 (2) ◽  
pp. 259-270 ◽  
Author(s):  
Keyvan Aminis ◽  
Arash Haseli

AbstractInterior-Point Methods (IPMs) are not only very effective in practice for solving linear optimization problems but also have polynomial-time complexity. Despite the practical efficiency of large-update algorithms, from a theoretical point of view, these algorithms have a weaker iteration bound with respect to small-update algorithms. In fact, there is a significant gap between theory and practice for large-update algorithms. By introducing self-regular barrier functions, Peng, Roos and Terlaky improved this gap up to a factor of log n. However, checking these self-regular functions is not simple and proofs of theorems involving these functions are very complicated. Roos el al. by presenting a new class of barrier functions which are not necessarily self-regular, achieved very good results through some much simpler theorems. In this paper we introduce a new kernel function in this class which yields the best known complexity bound, both for large-update and small-update methods.


Author(s):  
Robinson Sitepu ◽  
Fitri Maya Puspita ◽  
Elika Kurniadi ◽  
Yunita Yunita ◽  
Shintya Apriliyani

<span>The development of the internet in this era of globalization has increased fast. The need for internet becomes unlimited. Utility functions as one of measurements in internet usage, were usually associated with a level of satisfaction of users for the use of information services used. There are three internet pricing schemes used, that are flat fee, usage based and two-part tariff schemes by using one of the utility function which is Bandwidth Diminished with Increasing Bandwidth with monitoring cost and marginal cost. Internet pricing scheme will be solved by LINGO 13.0 in form of non-linear optimization problems to get optimal solution. The optimal solution is obtained using the either usage-based pricing scheme model or two-part tariff pricing scheme model for each services offered, if the comparison is with flat-fee pricing scheme. It is the best way for provider to offer network based on usage based scheme. The results show that by applying two part tariff scheme, the providers can maximize its revenue either for homogeneous or heterogeneous consumers.</span>


Sign in / Sign up

Export Citation Format

Share Document