Density functional theory (DFT) study of O3 molecules adsorbed on nitrogen-doped TiO2/MoS2 nanocomposites: applications to gas sensor devices

2017 ◽  
Vol 14 (12) ◽  
pp. 2615-2626 ◽  
Author(s):  
Amirali Abbasi ◽  
Jaber Jahanbin Sardroodi
2018 ◽  
Vol 20 (3) ◽  
pp. 2057-2065 ◽  
Author(s):  
J. Vijaya Sundar ◽  
M. Kamaraj ◽  
V. Subramanian

An attempt has been made to investigate the possibility of utilizing nitrogen doped graphene for the aerobic oxidation of thiols to disulfides using density functional theory.


Nano Express ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 010027
Author(s):  
Cantekin Kaykılarlı ◽  
Deniz Uzunsoy ◽  
Ebru Devrim Şam Parmak ◽  
Mehmet Ferdi Fellah ◽  
Özgen Çolak Çakır

2021 ◽  
Vol 551 ◽  
pp. 149479
Author(s):  
Herman Heffner ◽  
Ricardo Faccio ◽  
Ignacio López–Corral

Author(s):  
Hanlin Gan ◽  
Liang Peng ◽  
Feng Long Gu

The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.


2019 ◽  
Vol 21 (6) ◽  
pp. 3227-3241 ◽  
Author(s):  
Krishnamoorthy Arumugam ◽  
Neil A. Burton

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. This DFT study predicts VI/V reduction potentials of a range of uranyl(vi) complexes in non-aqueous solutions within ∼0.10−0.20 eV of experiment.


2004 ◽  
Vol 03 (04n05) ◽  
pp. 455-461
Author(s):  
YING DAI ◽  
ANYI LI ◽  
YING ZHANG ◽  
SHENGHAO HAN

Several Nitrogen (N)-hydrogen(H), N-dangling bond (DB) and N-single vacancy (V) complexes as the possible donor centers in diamond have been investigated using both supercell and cluster methods within the frame of density functional theory. We have found that the H—N—N—H complex exhibits shallower donor character than that of the N—H—N center discussed by Miyazaki et al.1 and it is one of the possible effective shallow donor centers in crystalline diamond. We conclude that the N—V related complex demonstrates a character of shallow donors and it should be one of the possible donor centers for the ultrananocrystalline diamond (UNCD) films, which are responsible for the n-type high conductivity of these films.


Sign in / Sign up

Export Citation Format

Share Document