Development of a Radial-Axial Pump-Turbine for Decentralized Small Pumped Storage Power Plants

2015 ◽  
Vol 105 (13) ◽  
pp. 43-47 ◽  
Author(s):  
Rudolf Schilling ◽  
Georg Schober ◽  
Michael Hutter ◽  
Susanne Thum
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4732
Author(s):  
Jing Yang ◽  
Yue Lv ◽  
Dianhai Liu ◽  
Zhengwei Wang

Pumped-storage power stations play a regulatory role in the power grid through frequent transition processes. The pressure pulsation in the draft tube of the pump-turbine under transient processes is important for safe operation, which is more intense than that in the steady-state condition. However, there is no effective method to obtain the exact pressure in the draft tube in the transient flow field. In this paper, the pressure in the draft tube of a pump-turbine under steady-state and transient conditions are studied by means of CFD. The reliability of the simulation method is verified by comparing the real pressure pulsation data with the test results. Due to the distribution of the pressure pulsation in the draft tube being complex and uneven, the location of the pressure monitoring points directly affects the accurate judgement of cavitation. Eight monitoring surfaces were set in the straight cone of the draft tube and nine monitoring points were set on each monitoring surface to analyze the pressure differences on the wall and inside the center of the draft tube. The relationships between the pressure pulsation value inside the center of the draft tube and on the wall are studied. The “critical” wall pressure pulsation value when cavitation occurs is obtained. This study provides references for judging cavitation occurrences by using the wall pressure pulsation value in practical engineering.


2018 ◽  
Vol 4 (1) ◽  
pp. 77-86
Author(s):  
Nuno Fonseca ◽  
André Madureira ◽  
João Peças Lopes ◽  
Manuel Matos

This work is within the scope of set of consultancy studies made for Portuguese islands. It focuses on the integration of Pumped Storage Power in isolated islands. The paper starts to address several power systems circumstances about two Portuguese islands on the energetic level. For each of these islands, an independent examination of the conditions to install a reversible hydro power plant is accomplished. Therefore, the energy volume to be stored due to excess of renewable generation and the ideal power and number of the pumps and turbines to be installed were identified and evaluated for the sake of using the produced energy surplus as to be pumped and later generated. The paper enhances the importance of storing energy in the operation of isolated and small systems with considerable amount of intermittent power resources as well as the conditions for the viability of installing new exploitations of this kind.


2018 ◽  
Vol 42 (15) ◽  
pp. 4898-4908 ◽  
Author(s):  
Gustavo Henrique Duzzi Libanori ◽  
Vinícius de Carvalho Neiva Pinheiro ◽  
Alberto Luiz Francato

2019 ◽  
Vol 2019 (18) ◽  
pp. 4955-4960
Author(s):  
Maria Helena Vasconcelos ◽  
Pedro Beires ◽  
Carlos Leal Moreira ◽  
João Abel Peças Lopes

1969 ◽  
Vol 91 (3) ◽  
pp. 387-395 ◽  
Author(s):  
R. J. Swed ◽  
K. H. Yang

Many problems were encountered during the startup and trial operation at Yards Creek. This paper describes the major problems and how they were resolved. There are many questions about pump-turbine operation that remain unanswered. Exchange of information and experience is needed. The authors hope that this article will help to stimulate this exchange of information.


2018 ◽  
Vol 8 (12) ◽  
pp. 2505 ◽  
Author(s):  
Jean Decaix ◽  
Vlad Hasmatuchi ◽  
Maximilian Titzschkau ◽  
Cécile Münch-Alligné

Due to the integration of new renewable energies, the electrical grid undergoes instabilities. Hydroelectric power plants are key players for grid control thanks to pumped storage power plants. However, this objective requires extending the operating range of the machines and increasing the number of start-up, stand-by, and shut-down procedures, which reduces the lifespan of the machines. CFD based on standard URANS turbulence modeling is currently able to predict accurately the performances of the hydraulic turbines for operating points close to the Best Efficiency Point (BEP). However, far from the BEP, the standard URANS approach is less efficient to capture the dynamics of 3D flows. The current study focuses on a hydraulic turbine, which has been investigated at the BEP and at the Speed-No-Load (SNL) operating conditions. Several “advanced” URANS models such as the Scale-Adaptive Simulation (SAS) SST k - ω and the BSL- EARSM have been considered and compared with the SST k - ω model. The main conclusion of this study is that, at the SNL operating condition, the prediction of the topology and the dynamics of the flow on the suction side of the runner blade channels close to the trailing edge are influenced by the turbulence model.


Sign in / Sign up

Export Citation Format

Share Document