Germination Strategies of Seeds of Cassia auriculata, a Perennial Weed Species of Arid and Semiarid Regions

Author(s):  
K. R. Shivanna
Botany ◽  
2015 ◽  
Vol 93 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Scott N. White ◽  
Nathan S. Boyd ◽  
Rene C. Van Acker ◽  
Clarence J. Swanton

Red sorrel (Rumex acetosella L.) is a ramet-producing herbaceous creeping perennial species commonly found as a weed in commercially managed lowbush blueberry (Vaccinium angustifolium Aiton) fields in Nova Scotia, Canada. Flowering and seed production occur primarily in overwintering ramets of this species, indicating a potential vernalization requirement for flowering. This study was therefore initiated to examine the role of vernalization, photoperiod, and pre-vernalization stimulus on ramet flowering. Red sorrel ramets propagated from creeping roots and seeds collected from established red sorrel populations in lowbush blueberry had an obligate requirement for vernalization to flower. Ramet populations maintained under pre- and post-vernalization photoperiods of 16 h flowered following 12 weeks of vernalization at 4 ± 0.1 °C, whereas those maintained under constant 16, 14, or 8 h photoperiods without vernalization did not flower. Vernalization for 10 weeks maximized, but did not saturate, the flowering response. Pre-vernalization photoperiod affected flowering response, with increased flowering frequency observed in ramet populations exposed to decreasing, rather than constant, photoperiod prior to vernalization. This study represents the first attempt to determine the combined effects of vernalization and photoperiod on red sorrel flowering, and the results provide a benchmark for the future study of flowering and sexual reproduction in this economically important perennial weed species.


1992 ◽  
Vol 108 (1) ◽  
pp. 107-113 ◽  
Author(s):  
G. Savini ◽  
J. D. Dunsmore ◽  
I. D. Robertson ◽  
P. Seneviratna

SUMMARYOesophagus samples from 714 cattle from Western Australia were examined by artificial digestion to detect the presence of Sarcocystis spp. The overall prevalence of infection was 52%. The prevalence of infection increased with age and was highest in the entire males (92%). The prevalence was lower in cattle which originated from arid and semiarid regions (9 and 31% respectively) than those from tropical (87%) and temperate (60%) regions. possible reasons for these differences are discussed and it is concluded that environmental and management factors as well as host age and sex influence the prevalence of infection with Sarcocystis spp. in cattle.


2017 ◽  
Vol 13 (1) ◽  
pp. 16 ◽  
Author(s):  
Jinchang Li ◽  
Yanfang Zhao ◽  
Xiaohui Fan

Weed Science ◽  
1999 ◽  
Vol 47 (6) ◽  
pp. 636-643 ◽  
Author(s):  
Wendy A. Pline ◽  
Jingrui Wu ◽  
Kriton K. Hatzios

Absorption, translocation, and metabolism of14C-glufosinate were studied in three annual and two perennial weed species. Young seedlings ofSetaria faberi, Chenopodium album, Cassia obtusifolia, Solanum carolinense, andAsclepias syriacawere treated with foliar-applied14C-glufosinate, and plant tissues were harvested 12, 48, and 72 h after treatment (HAT). Absorption of14C-glufosinate was initially rapid, but increased only slightly after 12 h in all species. Glufosinate absorption was highest inS. carolinense(73% of applied radioactivity), followed byS. faberi(54%),C. obtusifolia(44%),C. album(41%), andA. syriaca(37%) 72 HAT. Translocation of radioactivity out of the treated leaf was species dependent and did not increase much with time in all weed species.S. carolinenseandS. faberitranslocated the highest amounts of absorbed radioactivity out of the treated leaf with 49 to 59% moving to the upper foliage.S. faberitranslocated the highest amount of absorbed radioactivity to the roots (12 to 14%), whileC. albumtranslocated the least (2 to 3%). TLC analysis of plant extracts showed that14C-glufosinate was not metabolized inS. faberi, C. obtusifolia, S. carolinense, andA. syriaca. A glufosinate metabolite with an Rf value matching that of methyl-phosphinico propionate was detected inC. album. Treatment with ammonium sulfate (AMS) increased glufosinate absorption inS. faberiandC. obtusifolia12 HAT, but decreased absorption inC. album. Treatment with pelargonic acid (PA) did not affect glufosinate absorption in any of the species tested. Treatment with AMS and PA did not affect glufosinate translocation in any of the five weed species. Treatment with AMS and PA did not influence the metabolism of glufosinate in any of the five weed species studied. These results show that differential absorption and translocation seem to explain the greater sensitivity of the annual and perennial weeds to glufosinate. Treatment with ammonium sulfate may increase the efficacy of glufosinate in perennial weeds.


2008 ◽  
Vol 7 (4) ◽  
pp. 1313-1313
Author(s):  
Alessandro Santini ◽  
Gerardo Severino

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Theresa A. McHugh ◽  
Ember M. Morrissey ◽  
Sasha C. Reed ◽  
Bruce A. Hungate ◽  
Egbert Schwartz

Sign in / Sign up

Export Citation Format

Share Document