scholarly journals Quasi-dual Baer modules

Author(s):  
Rachid Tribak ◽  
Yahya Talebi ◽  
Mehrab Hosseinpour

AbstractLet R be a ring and let M be an R-module with $$S={\text {End}}_R(M)$$ S = End R ( M ) . The module M is called quasi-dual Baer if for every fully invariant submodule N of M, $$\{\phi \in S \mid Im\phi \subseteq N\} = eS$$ { ϕ ∈ S ∣ I m ϕ ⊆ N } = e S for some idempotent e in S. We show that M is quasi-dual Baer if and only if $$\sum _{\varphi \in \mathfrak {I}} \varphi (M)$$ ∑ φ ∈ I φ ( M ) is a direct summand of M for every left ideal $$\mathfrak {I}$$ I of S. The R-module $$R_R$$ R R is quasi-dual Baer if and only if R is a finite product of simple rings. Other characterizations of quasi-dual Baer modules are obtained. Examples which delineate the concepts and results are provided.

2015 ◽  
Vol 22 (spec01) ◽  
pp. 849-870 ◽  
Author(s):  
Sh. Asgari ◽  
A. Haghany

We introduce the notion of t-Rickart modules as a generalization of t-Baer modules. Dual t-Rickart modules are also defined. Both of these are generalizations of continuous modules. Every direct summand of a t-Rickart (resp., dual t-Rickart) module inherits the property. Some equivalent conditions to being t-Rickart (resp., dual t-Rickart) are given. In particular, we show that a module M is t-Rickart (resp., dual t-Rickart) if and only if M is a direct sum of a Z2-torsion module and a nonsingular Rickart (resp., dual Rickart) module. It is proved that for a ring R, every R-module is dual t-Rickart if and only if R is right t-semisimple, while every R-module is t-Rickart if and only if R is right Σ-t-extending. Other types of rings are characterized by certain classes of t-Rickart (resp., dual t-Rickart) modules.


2010 ◽  
Vol 09 (03) ◽  
pp. 365-381 ◽  
Author(s):  
LIXIN MAO

R is called a Baer ring if the left annihilator of every nonempty subset of R is a direct summand of RR. R is said to be a left AFG ring in case the left annihilator of every nonempty subset of R is a finitely generated left ideal. In this paper, we study Baer rings and AFG rings of endomorphisms of modules in terms of envelopes. Some known results are extended.


2015 ◽  
Vol 15 (02) ◽  
pp. 1550132 ◽  
Author(s):  
P. Amirzadeh Dana ◽  
A. Moussavi

Analogous to left p.q.-Baer property of a ring [G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra29 (2001) 639–660], we say a right R-module M is endo-principallyquasi-Baer (or simply, endo-p.q.-Baer) if for every m ∈ M, lS(Sm) = Se for some e2 = e ∈ S = End R(M). It is shown that every direct summand of an endo-p.q.-Baer module inherits the property that any projective (free) module over a left p.q.-Baer ring is an endo-p.q.-Baer module. In particular, the endomorphism ring of every infinitely generated free right R-module is a left (or right) p.q.-Baer ring if and only if R is quasi-Baer. Furthermore, every principally right ℱℐ-extending right ℱℐ-𝒦-nonsingular ring is left p.q.-Baer and every left p.q.-Baer right ℱℐ-𝒦-cononsingular ring is principally right ℱℐ-extending.


1968 ◽  
Vol 32 ◽  
pp. 253-258 ◽  
Author(s):  
R. R. Colby ◽  
Edgar A. Rutter

A ring R (with identity) is semi-primary if it contains a nilpotent ideal N with R/N semi-simple with minimum condition. R is called a left QF-3 ring if it contains a faithful projective injective left ideal. If R is semi-primary and left QF-3, then there is a faithful projective injective left ideal of R which is a direct summand of every faithful left R-module [5], in agreement with the definition of QF-3 algebra given by R.M. Thrall [6]. Let Q(M) denote the injective envelope of a (left) R-module M. We call R left QF-3+ if Q(R) is projective. J.P. Jans showed that among rings with minimum condition on left ideals, the classes of QF-3 and QF-3+ rings coincide [5].


2018 ◽  
Vol 17 (08) ◽  
pp. 1850155 ◽  
Author(s):  
Gangyong Lee ◽  
S. Tariq Rizvi

The purpose of this paper is to further study the endoprime modules as one of the special classes of quasi-Baer modules. As a module theoretic analogue of a prime ring, we characterize an endoprime module via its endomorphism ring and a weak retractability condition. It is shown that any direct summand of an endoprime module is an endoprime module. A characterization is obtained when a direct sum of endoprime modules is an endoprime module. It is well known that every prime ring is semicentral reduced. We prove that a column (and row) finite matrix ring over a semicentral reduced ring is also a semicentral reduced ring. Consequently, it is shown that a column (and row) finite matrix ring over a prime ring is prime. Applications and examples illustrating our results are provided.


1958 ◽  
Vol 13 ◽  
pp. 85-88 ◽  
Author(s):  
Irving Kaplansky

A ring R is said to be right (left) hereditary if every right (left) ideal in R is projective, that is, a direct summand of a free R-module. Cartan and Eilenberg [3, p. 15] ask whether there exists a right hereditary ring which is not left hereditary. The answer: yes.


1988 ◽  
Vol 104 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Peter Symonds

If G is a group with a subgroup H and R is a Dedekind domain, then an H-projective RG-lattice is an RG-lattice that is a direct summand of an induced lattice for some RH-lattice N: they have been studied extensively in the context of modular representation theory. If H is the trivial group these are the projective lattices. We define a relative character χG/H on H-projective lattices, which in the case H = 1 is equivalent to the Hattori–Stallings trace for projective lattices (see [5, 8]), and in the case H = G is the ordinary character. These characters can be used to show that the R-ranks of certain H-projective lattices must be divisible by some specified number, generalizing some well-known results: cf. Corollary 3·6. If for example we take R = ℤ, then |G/H| divides the ℤ-rank of any H-projective ℤG-lattice.


2005 ◽  
Vol 04 (03) ◽  
pp. 231-235
Author(s):  
YASUYUKI HIRANO ◽  
HISAYA TSUTSUI

We investigate a ring R with the property that for every right R-module M and every ideal I of R the annihilator of I in M is a direct summand of M, and determine conditions under which such a ring is semisimple Artinian.


1972 ◽  
Vol 13 (1) ◽  
pp. 56-60 ◽  
Author(s):  
B. J. Tomiuk

Ogasawara and Yoshinaga [9] have shown that aB*-algebra is weakly completely continuous (w.c.c.) if and only if it is*-isomorphic to theB*(∞)-sum of algebrasLC(HX), where eachLC(HX)is the algebra of all compact linear operators on the Hilbert spaceHx.As Kaplansky [5] has shown that aB*-algebra isB*-isomorphic to theB*(∞)-sum of algebrasLC(HX)if and only if it is dual, it follows that a5*-algebraAis w.c.c. if and only if it is dual. We have observed that, if only certain key elements of aB*-algebraAare w.c.c, thenAis already dual. This observation constitutes our main theorem which goes as follows.A B*-algebraAis dual if and only if for every maximal modular left idealMthere exists aright identity modulo M that isw.c.c.


1973 ◽  
Vol 14 (2) ◽  
pp. 136-144
Author(s):  
M. S. Vijayakumar

This paper establishes a relationship (Theorem 4.1) between the approaches of A. C. Thompson [8, 9] and E. G. Effros [2] to the representation of simplex algebras, that is, real unital Banach algebras that are simplex spaces with the unit for order identity. It proves that the (nonempty) interior of the associated cone is contained in the principal component of the set of all regular elements of the algebra. It also conjectures that each maximal ideal (in the order sense—see below) of a simplex algebra contains a maximal left ideal of the algebra. This conjecture and other aspects of the relationship are illustrated by considering algebras of n × n real matrices.


Sign in / Sign up

Export Citation Format

Share Document