scholarly journals Approximation of SDE solutions using local asymptotic expansions

Author(s):  
A. M. Davie

AbstractWe develop an asymptotic expansion for small time of the density of the solution of a non-degenerate system of stochastic differential equations with smooth coefficients, and apply this to the stepwise approximation of solutions. The asymptotic expansion, which takes the form of a multivariate Edgeworth-type expansion, is obtained from the Kolmogorov forward equation using some standard PDE results. To generate one step of the approximation to the solution, we use a Cornish–Fisher type expansion derived from the Edgeworth expansion. To interpret the approximation generated in this way as a strong approximation we use couplings between the (normal) random variables used and the Brownian path driving the SDE. These couplings are constructed using techniques from optimal transport and Vaserstein metrics. The type of approximation so obtained may be regarded as intermediate between a conventional strong approximation and a weak approximation. In principle approximations of any order can be obtained, though for higher orders the algebra becomes very heavy. In order 1/2 the method gives the usual Euler approximation; in order 1 it gives a variant of the Milstein method, but which needs only normal variables to be generated. However the method is somewhat limited by the non-degeneracy requirement.

2015 ◽  
Vol 26 (01) ◽  
pp. 59-110 ◽  
Author(s):  
Claude Bardos ◽  
Denis Grebenkov ◽  
Anna Rozanova-Pierrat

We consider a heat problem with discontinuous diffusion coefficients and discontinuous transmission boundary conditions with a resistance coefficient. For all bounded (ϵ, δ)-domains Ω ⊂ ℝn with a d-set boundary (for instance, a self-similar fractal), we find the first term of the small-time asymptotic expansion of the heat content in the complement of Ω, and also the second-order term in the case of a regular boundary. The asymptotic expansion is different for the cases of finite and infinite resistance of the boundary. The derived formulas relate the heat content to the volume of the interior Minkowski sausage and present a mathematical justification to the de Gennes' approach. The accuracy of the analytical results is illustrated by solving the heat problem on prefractal domains by a finite elements method.


2019 ◽  
Vol 25 (3) ◽  
pp. 239-252
Author(s):  
Yusuke Okano ◽  
Toshihiro Yamada

Abstract The paper shows a new weak approximation method for stochastic differential equations as a generalization and an extension of Heath–Platen’s scheme for multidimensional diffusion processes. We reformulate the Heath–Platen estimator from the viewpoint of asymptotic expansion. The proposed scheme is implemented by a Monte Carlo method and its variance is much reduced by the asymptotic expansion which works as a kind of control variate. Numerical examples for the local stochastic volatility model are shown to confirm the efficiency of the method.


2011 ◽  
Vol 03 (01n02) ◽  
pp. 229-249 ◽  
Author(s):  
PANAYOT S. VASSILEVSKI

We give an overview of a number of algebraic multigrid methods targeting finite element discretization problems. The focus is on the properties of the constructed hierarchy of coarse spaces that guarantee (two-grid) convergence. In particular, a necessary condition known as "weak approximation property," and a sufficient one, referred to as "strong approximation property," are discussed. Their role in proving convergence of the TG method (as iterative method) and also on the approximation properties of the algebraic mottigrid (AMG) coarse spaces if used as discretization tool is pointed out. Some preliminary numerical results illustrating the latter aspect are also reported.


2017 ◽  
Vol 04 (01) ◽  
pp. 1750002
Author(s):  
Toshihiro Yamada

This paper introduces a new efficient and practical weak approximation for option price under local stochastic volatility model as marginal expectation of stochastic differential equation, using iterative asymptotic expansion with Malliavin weights. The explicit Malliavin weights for SABR model are shown. Numerical experiments confirm the validity of our discretization with a few time steps.


Author(s):  
Vera G. Kopylova ◽  

The paper considers the problem of identification for a source function in one of two equations of parabolic quasilinear system. The case of Cauchy data in an unbounded domain and the case of boundary conditions of the first kind in a rectangular domain are considered. The question of the existence and uniqueness of the solution is studied. The proof uses a differential level splitting method known as the weak approximation method. The solution is obtained on a small time interval in the class of sufficiently smooth bounded functions


2021 ◽  
Vol 26 (1) ◽  
pp. 59-84
Author(s):  
Mathias Beiglböck ◽  
Gudmund Pammer ◽  
Walter Schachermayer

AbstractFamously, mathematical finance was started by Bachelier in his 1900 PhD thesis where – among many other achievements – he also provided a formal derivation of the Kolmogorov forward equation. This also forms the basis for Dupire’s (again formal) solution to the problem of finding an arbitrage-free model calibrated to a given volatility surface. The latter result has rigorous counterparts in the theorems of Kellerer and Lowther. In this survey article, we revisit these hallmarks of stochastic finance, highlighting the role played by some optimal transport results in this context.


Sign in / Sign up

Export Citation Format

Share Document