Short-time heat diffusion in compact domains with discontinuous transmission boundary conditions
We consider a heat problem with discontinuous diffusion coefficients and discontinuous transmission boundary conditions with a resistance coefficient. For all bounded (ϵ, δ)-domains Ω ⊂ ℝn with a d-set boundary (for instance, a self-similar fractal), we find the first term of the small-time asymptotic expansion of the heat content in the complement of Ω, and also the second-order term in the case of a regular boundary. The asymptotic expansion is different for the cases of finite and infinite resistance of the boundary. The derived formulas relate the heat content to the volume of the interior Minkowski sausage and present a mathematical justification to the de Gennes' approach. The accuracy of the analytical results is illustrated by solving the heat problem on prefractal domains by a finite elements method.