scholarly journals Effect and evaluation of prying action for top- and seat-angle connections

2015 ◽  
Vol 7 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Ali Ahmed ◽  
Rafiq Hasan
Keyword(s):  
Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 229
Author(s):  
Iman Faridmehr ◽  
Mehdi Nikoo ◽  
Mohammad Hajmohammadian Baghban ◽  
Raffaele Pucinotti

The behavior of beam-to-column connections significantly influences the stability, strength, and stiffness of steel structures. This is particularly important in extreme non-elastic responses, i.e., earthquakes, and sudden column removal, as the fluctuation in strength and stiffness affects both supply and demand. Accordingly, it is essential to accurately estimate the strength and stiffness of connections in the analysis of and design procedures for steel structures. Beginning with the state-of-the-art, the capacity of three available component-based mechanical models to estimate the complex mechanical properties of top- and seat-angle connections with double-web angles (TSACWs), with variable parameters, were investigated. Subsequently, a novel hybrid krill herd algorithm-artificial neural network (KHA-ANN) model was proposed to acquire an informational model from the available experimental dataset. Using several statistical metrics, including the corresponding coefficient of variation (CoV), correlation coefficient (R), and the correlation coefficient provided by the Taylor diagram, this study revealed that the krill herd-ANN model achieved the most reliable predictive accuracy for the strength and stiffness of top- and seat-angle connections with double web angles.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 4322-4338
Author(s):  
Mohammad Jobaer Hasan ◽  
Mahmud Ashraf ◽  
Safat Al-Deen ◽  
Sukanta Kumer Shill ◽  
Brian Uy

2021 ◽  
Vol 345 ◽  
pp. 00027
Author(s):  
Václav Sláma ◽  
David Šimurda ◽  
Lukáš Mrózek ◽  
Ladislav Tajč ◽  
Jindřich Hála ◽  
...  

Characteristics of a new compact valve design for steam turbines are analysed by measuring pressure losses and oscillations on the valve model. It is the model of an intercept valve of the intermediate-pressure turbine part. This valve is relatively smaller hence cheaper than usual control and intercept valves. Besides, four different valve seat angles were tested in order to investigate the valve seat angle influence. In order to further clarify measured phenomena, the wide range of numerical simulations were also carried out. Measurements were performed in the Aerodynamic laboratory of the Institute of Thermomechanics of the Czech Academy of Sciences in an air test rig installed in a modular aerodynamic tunnel. Numerical simulations were performed in the Doosan Skoda Power Company using a package of ANSYS software tools. Measurement results are compared with numerical and generalized in the form of valve characteristics and pressure oscillation maps. As a result of the pressure loss analysis, pressure losses in similar valve assemblies can be predicted with required accuracy for each new turbine where modern compact valves are used. As a result of the pressure oscillation analysis, operating conditions at which dangerous flow instabilities can occur were identified. Thanks to this, the areas of safe and dangerous operating conditions can be predicted so that the operational reliability of the valve can be guaranteed.


1973 ◽  
Author(s):  
D. B. Rogers ◽  
A. B. Ashare ◽  
K. A. Smiles ◽  
J. W. Frazier ◽  
V. D. Skowronski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document