valve seat
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 40)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2129 (1) ◽  
pp. 012097
Author(s):  
M A S M Hassan ◽  
A B Shahriman ◽  
Z M Razlan ◽  
N S Kamarrudin ◽  
W K N Khairunizam ◽  
...  

Abstract As the engine reached high speed, the exhaust valve temperature increased exponentially due to the exhaust gas produced by the combustion process between the mixture of air and fuel within the combustion chamber of the internal combustion engine. The valve is subjected to thermal loading due to high temperature and pressure within the cylinder, which must withstand a material temperature for sustainable and optimal operation. To avoid this loss, a perfect medium must be prepared to ensure that the heat is extracted smoothly. This can be done when the valve is in contact with the seat and there is a periodic heat transfer contact. Therefore, it is imperative to research the correlation between valve and valve seat to understand the two sections’ heat transfer mechanism. In this study, thermal contact analysis was used to identify heat transfer between the valve and the valve seat as both parts are interconnected. This research also has an interest in studying the two surface conduction mechanisms as the exhaust valve closed in steady-state conditions. Thus, this study portrays a significant method, particularly for the determining the distribution of temperature, heat flux, and heat flux direction between the valve and its seat using ANSYS Workbench.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jason Kolodziej ◽  
Jacob Chesnes

This paper presents a vibration-based condition monitoring approach for early assessment of valve wear in an industrial reciprocating compressor. Valve seat  wear is a common fault mode that is caused by repeated impact and accelerated by chatter. Seeded faults consistent with valve seat wear are installed on the head-side discharge valves of a Dresser-Rand ESH-1 industrial reciprocating compressor. Due to the cyclostationary nature of these units a time-frequency analysis is employed where targeted crank angle positions can isolate externally mounted, non-invasive, vibration measurements. A region-of-interest (ROI) is then extracted from the time-frequency analysis and used to train a suitably sized convolutional neural network (CNN). The proposed deep learning method is then compared against a similarly trained discriminant classifier using the same ROIs where features are extracted using texture and shape image statistics. Both methods achieve > 90% success with the CNN classification strategy nearing a perfect result.


2021 ◽  
Vol 11 (19) ◽  
pp. 9252
Author(s):  
Claudia Patricia Durasiewicz ◽  
Sophia Thekla Güntner ◽  
Philipp Klaus Maier ◽  
Wolfgang Hölzl ◽  
Gabriele Schrag

Microfluidic systems for medical applications necessitate reliable, wide flow range, and low leakage microvalves for flow path control. High design complexity of microvalves increases the risk of possible malfunction. We present a normally open microvalve based on energy-efficient piezoelectric actuation for high closing forces and micromachined valve seat trenches for reliable valve operation. A comprehensive investigation of influencing parameters is performed by extensive fluidic 3D finite element simulation, derivation of an analytical closed state leakage rate model, as well as fabrication and test of the microvalve. Additional valve seat coating and a high force actuator are introduced for further leakage reduction. The microvalve has a wide-open flow range as well as good sealing abilities in closed state. Extensive fatigue tests of 1 × 106 actuation cycles show that additional coating of the valve seat or increased actuator strength promote sealing performance stability. Analytical calculations of leakage are suitable to estimate experimentally obtained leakage rates and, along with computational fluidic dynamic (CFD) simulations, enable future microvalve design optimization. In conclusion, we demonstrate that the presented normally open microvalve is suitable for the design of safe and reliable microfluidic devices for medical applications.


2021 ◽  
pp. 161966
Author(s):  
Chaochao Ji ◽  
Qiaoqin Guo ◽  
Jianping Li ◽  
Yongchun Guo ◽  
Zhong Yang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4860
Author(s):  
Andrzej Romański ◽  
Elżbieta Cygan-Bączek

The conventional copper infiltrated high speed steel (HSS) valve seats used in gasoline engines are not suitable for CNG combustion because the exhaust gas temperature is at least 80 °C higher, which drastically shortens the service life of the engine valves. Therefore, a proprietary high-alloy HSS-base material was designed to combat hot corrosion and mechanical wear of valve seat faces in CNG fuelled engines. A batch of −100 mesh water atomized HSS powder was commissioned. The powder was vacuum annealed in order to reduce oxygen content and increase its compressibility. To improve the final part machinability, 1.2% MnS was admixed to the HSS powder prior to compaction. The green compacts were sintered at 1135 °C in nitrogen to around 83% TD and subsequently infiltrated with a copper alloy. After installing the valve seat components on a cylinder head, the engine was tested for 100 h according to the automotive industry valve seat wear test procedures. Both the periodic 8-h checks as well as the final examination of the valve seats showed very slow wear, indicating their suitability for CNG powered engines.


Author(s):  
Stefan Wallat ◽  
Stefan Preibisch ◽  
Matthias Strauch ◽  
Dieter Brillert

Abstract The governing of steam turbines is often realised by a set of two or more valves, which control the amount of steam entering the turbine. During part-load operation forces caused by pressure fluctuations, turbulence etc. are acting on the throttling valve and lead to spindle vibrations. Besides these mechanisms, it is assumed that there is also an interaction between the control valves, which leads to another source of vibration. In this paper, the design of a new test rig using air with two parallel control valves is presented. One aspect of the design is the chosen scaling method, which includes material selection for the valve spindle, and ensures comparability and transferability of the vibrational behaviour to the full scale with steam. Another aspect is the selection of measurement equipment. The results show that the reasons for valve vibrations can be located both upstream and downstream of the valve seat. Forces caused by pressure fluctuations in and behind the valve gap lead to similar oscillations at both valves. In addition, the upstream valve causes disturbances that lead to partly differing behaviour of the second valve.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jianping Zhao ◽  
Shunli Zhang ◽  
Zhenhuan Dou ◽  
YuBo Sun ◽  
Jiangkun Wan ◽  
...  

In this paper, taking a certain type of high-power diesel engine exhaust valve abnormal wear phenomenon as an example, we conduct research on the exhaust valve surface micromorphology characteristics, contact surface accumulation products, additive transition layer, and combustion test. These passed diesel sulfur content comparative test, diesel additive composition analysis, and high-sulfur-content and low-sulfur-content diesel and diesel oil additive action test. At present, there is no authoritative research on the influence of sulfur content in diesel on valve seat wear of high-power diesel engines, and the protection mechanism of diesel additives on the valve seat is not clear. The sulfur in diesel, like the lead in gasoline, has long been known to resist wear in the valve seats of high-power diesel engines; just as gasoline additives compensate for the loss of lead, diesel oil additives seem to compensate for the loss of sulfur. Tests show that a uniform carbon deposition layer is formed on the contact surface after the diesel is burned, and the carbon deposition layer is more densely and uniformly adsorbed on the contact surface under the action of diesel additives to form an antiwear layer. Tests also show that the sulfur in diesel has no effect on the wear resistance of the valve seat.


2021 ◽  
Author(s):  
Stefan Wallat ◽  
Stefan Preibisch ◽  
Matthias Strauch ◽  
Dieter Brillert

Abstract The governing of steam turbines is often realised by a set of two or more valves, which control the amount of steam entering the turbine. During part-load operation forces caused by pressure fluctuations, turbulence etc. are acting on the throttling valve and lead to spindle vibrations. Besides these mechanisms, it is assumed that there is also an interaction between the control valves, which leads to another source of vibration. In this paper, the design of a new test rig using air with two parallel control valves is presented. One aspect of the design is the chosen scaling method, which includes material selection for the valve spindle, and ensures comparability and transferability of the vibrational behaviour to the full scale with steam. Another aspect is the selection of measurement equipment. The results show that the reasons for valve vibrations can be located both upstream and downstream of the valve seat. Forces caused by pressure fluctuations in and behind the valve gap lead to similar oscillations at both valves. In addition, the upstream valve causes disturbances that lead to partly differing behaviour of the second valve.


Sign in / Sign up

Export Citation Format

Share Document