scholarly journals Effect of general rotation on Rayleigh–Taylor instability of two superposed fluids with suspended particles

Author(s):  
G. A. Hoshoudy ◽  
Pardeep Kumar
1968 ◽  
Vol 21 (6) ◽  
pp. 923 ◽  
Author(s):  
RC Sharma ◽  
KM Srivastava

A general equation studying the combined effect of horizontal and vertical magnetic fields on the stability of two superposed fluids has been obtained. The unstable and stable cases at the interface (z = 0) between two uniform fluids, with both the possibilities of real and complex n, have been. separately dealt with. Some new results are obtained. In the unstable case with real n, the perturbations are damped or unstable according as 2(k'-k~L2)_(<X2-<Xl)k is> or < 0 under the physical situation (35). In the stable case, the perturbations are stable or unstable according as 2(k2_k~L2)+(<Xl-<X2)k is > or < 0 under the same physical situation (35). The perturbations become unstable if HIlIH 1- (= L) is large. Both the cases are also discussed with imaginary n.


1984 ◽  
Vol 39 (10) ◽  
pp. 939-944 ◽  
Author(s):  
R. K. Chhajlani ◽  
R. K. Sanghvi ◽  
P. Purohit

Abstract The hydromagnetric Rayleigh-Taylor instability of a composite medium has been studied in the presence of suspended particles for an exponentially varying density distribution. The prevalent horizontal magnetic field and viscosity of the medium are assumed to be variable. The dispersion relation is derived for such a medium. It is found that the stability criterion is independent of both viscosity and suspended particles. The system can be stabilized for an appropriate value of the magnetic field. It is found that the suspended particles can suppress as well as enhance the growth rate of the instability in certain regions. The growth rates are obtained for a viscid medium with the inclusion of suspended particles and without it. It has been shown analytically that the growth rate is modified by the inclusion of the relaxation frequency parameter of the suspended particles.


Sign in / Sign up

Export Citation Format

Share Document