Influence of boundary roughness on the saturation of electrohydrodynamic Rayleigh-Taylor instability in two superposed fluids in the presence of nanostructured porous layer

Author(s):  
Krishna B. Chavaraddi ◽  
Priya M. Gouder ◽  
Mahantesh M. Nandeppanavar
1968 ◽  
Vol 21 (6) ◽  
pp. 923 ◽  
Author(s):  
RC Sharma ◽  
KM Srivastava

A general equation studying the combined effect of horizontal and vertical magnetic fields on the stability of two superposed fluids has been obtained. The unstable and stable cases at the interface (z = 0) between two uniform fluids, with both the possibilities of real and complex n, have been. separately dealt with. Some new results are obtained. In the unstable case with real n, the perturbations are damped or unstable according as 2(k'-k~L2)_(<X2-<Xl)k is> or < 0 under the physical situation (35). In the stable case, the perturbations are stable or unstable according as 2(k2_k~L2)+(<Xl-<X2)k is > or < 0 under the same physical situation (35). The perturbations become unstable if HIlIH 1- (= L) is large. Both the cases are also discussed with imaginary n.


2019 ◽  
Vol 8 (1) ◽  
pp. 39-45
Author(s):  
Vishwanath B. Awati ◽  
Krishna B. Chavaraddi ◽  
Priya M. Gouder

Abstract The boundary roughness effects on nonlinear saturation of Rayleigh-Taylor instability (RTI) in couple-stress fluid have been studied using numerical technique on the basis of stability of interface between two fluids of the system. The resulting fourth order ordinary nonlinear differential equation is solved using Adams-Bashforth predictor and Adams-Moulton corrector techniques numerically. The various surface roughness effects and surface tension effects on nonlinear saturation of RTI of two superposed couple-stress fluid and fluid saturated porous media are well investigated. At the interface, the surface tension acts and finally stability of the problem is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document