scholarly journals Multi-criteria analysis of building assessment regarding energy performance using a life-cycle approach

Author(s):  
Silvia Vilcekova ◽  
Eva Kridlova Burdova
2021 ◽  
Vol 65 (2-4) ◽  
pp. 312-316
Author(s):  
Surnam Sonia Longo ◽  
Maurizio Cellura ◽  
Maria Anna Cusenza ◽  
Francesco Guarino ◽  
Ilaria Marotta

This paper aims at assessing the embodied energy and greenhouse gas emissions (GHGs) of two building envelopes, designed for a two floors semi-detached house located in the Central Italy. The analysis is performed by applying the Life Cycle Assessment methodology, following a from cradle-to-gate approach. Fixtures (windows and doors), external and internal opaque walls, roof and floors (including interstorey floors) make the building envelopes. Their stratigraphy allows for achieving the thermal transmittance values established in the Italian Decree on energy performance of buildings. The two examined envelopes differ only for the insulation material: extruded expanded polystyrene (XPS) or cellulose fibers. The results shows that the envelope using cellulose fibers has better performance than that using XPS: it allows for reducing the embodied energy and the GHGs of about 13% and 9.3%, respectively. A dominance analysis allows to identify the envelope components responsible of the higher impacts and the contribution of the insulating material to the impacts. The study is part of the Italian research “Analysis of the energy impacts and greenhouse gas emissions of technologies and components for the energy efficiency of buildings from a life cycle perspective” funded by the Three-year Research Plan within the National Electricity System 2019-2021.


Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


2018 ◽  
Vol 173 ◽  
pp. 281-290 ◽  
Author(s):  
L. Rocchi ◽  
M. Kadziński ◽  
M.E. Menconi ◽  
D. Grohmann ◽  
G. Miebs ◽  
...  

2020 ◽  
Vol 172 ◽  
pp. 18003
Author(s):  
Yanaika Decorte ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche ◽  
Klaas Calle

The substantial contribution of buildings in the energy consumption and emissions renders the existing building stock a key element to tackle the climate crisis. Consequently, defining a deliberate decision-making process gains importance. Decisions are currently often based on building codes, budget, and in the best case Pareto optimality of the energy performance and the net present value of the life-cycle cost. The growing attention to sustainability, however, raises questions about the effect of environmental considerations on the outcome of the Pareto optimal solutions. This study quantifies the effect of including the environmental aspect as a third dimension to the current evaluation approach. Therefore, the most appropriate renovation measures are selected using a multidimensional Pareto optimization. The method is applied to a residential high-rise building in Belgium. Firstly, the Pareto front is constituted based on life-cycle costing and life-cycle assessment separately. Subsequently, the respective results are combined into an integrated life cycle approach by enumerating the LCA results as an external cost to the LCC results. The results show that the Pareto optimal solutions from a financial and environmental perspective do not coincide. Although the financial aspect dominates, adding the environmental cost eliminates low-performant financial optima, leading to optimal solutions with a larger insulation thickness.


Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


2017 ◽  
Vol 580 ◽  
pp. 147-157 ◽  
Author(s):  
Isabel Garcia-Herrero ◽  
María Margallo ◽  
Raquel Onandía ◽  
Rubén Aldaco ◽  
Angel Irabien

Author(s):  
Ajay Babu Pazhayattil ◽  
Naheed Sayeed-Desta ◽  
Emilija Fredro-Kumbaradzi ◽  
Jordan Collins

Sign in / Sign up

Export Citation Format

Share Document