scholarly journals Selecting Insulating Materials for Building Envelope: A Life Cycle Approach

2021 ◽  
Vol 65 (2-4) ◽  
pp. 312-316
Author(s):  
Surnam Sonia Longo ◽  
Maurizio Cellura ◽  
Maria Anna Cusenza ◽  
Francesco Guarino ◽  
Ilaria Marotta

This paper aims at assessing the embodied energy and greenhouse gas emissions (GHGs) of two building envelopes, designed for a two floors semi-detached house located in the Central Italy. The analysis is performed by applying the Life Cycle Assessment methodology, following a from cradle-to-gate approach. Fixtures (windows and doors), external and internal opaque walls, roof and floors (including interstorey floors) make the building envelopes. Their stratigraphy allows for achieving the thermal transmittance values established in the Italian Decree on energy performance of buildings. The two examined envelopes differ only for the insulation material: extruded expanded polystyrene (XPS) or cellulose fibers. The results shows that the envelope using cellulose fibers has better performance than that using XPS: it allows for reducing the embodied energy and the GHGs of about 13% and 9.3%, respectively. A dominance analysis allows to identify the envelope components responsible of the higher impacts and the contribution of the insulating material to the impacts. The study is part of the Italian research “Analysis of the energy impacts and greenhouse gas emissions of technologies and components for the energy efficiency of buildings from a life cycle perspective” funded by the Three-year Research Plan within the National Electricity System 2019-2021.

2019 ◽  
Vol 15 ◽  
pp. 01030
Author(s):  
E. Adoir ◽  
S. Penavayre ◽  
T. Petitjean ◽  
L. De Rességuier

Viticulture faces two challenges regarding climate change: adapting and mitigating greenhouse gas emissions. Are these two challenges compatible? This is one of the questions to which Adviclim project (Life project, 2014–2019) provided tools and answers. The assessment of greenhouse gas emissions was implemented at the scale of the plot using a life cycle approach: calculating the carbon footprint. This approach makes it possible to take into account the emissions generated during each stage of the life cycle of a product or a service: in this case, the cultivation of one hectare of vine for one year. Carbon footprint was assessed for the 5 pilot sites of the Adviclim project: Saint-Emilion (France), Coteaux du Layon/Samur (France), Geisenheim (Germany), Cotnari (Romania) and Plompton (United Kingdom). An important work for primary data collection regarding observed practices was carried out with a sample of reresentative farms for these 5 sites, and for one to three vintages depending on the site. Beyond the question asked in the project, the calculation of these carbon footprints made it possible to (i) make winegrowers aware of the life cycle approach and the share of direct emissions generated by viticulture, (ii) acquire new references on the technical itineraries and their associated emissions, (iii) improve the adaptation of the methodology for calculating the carbon footprint to viticulture.


2012 ◽  
Vol 16 ◽  
pp. S28-S38 ◽  
Author(s):  
Pierryves Padey ◽  
Isabelle Blanc ◽  
Denis Le Boulch ◽  
Zhao Xiusheng

2011 ◽  
Vol 140 (1-3) ◽  
pp. 136-148 ◽  
Author(s):  
Troels Kristensen ◽  
Lisbeth Mogensen ◽  
Marie Trydeman Knudsen ◽  
John E. Hermansen

2012 ◽  
Vol 52 (2) ◽  
pp. 661
Author(s):  
Rob Rouwette

Australia is experiencing a time of major change in its energy sector. First, there is record investment in developing new fossil fuel resources—such as coal, LNG and coal seam methane gas—for export. Second, there is an ever-increasing attention to renewable energy generation for the domestic market. The looming introduction of a price on carbon (greenhouse gas emissions) in 2012 has fuelled the debate about how clean various energy sources are, and how any/all emissions associated with their development and the generation of energy should be treated. As a market reponse, a significant increase in using life-cycle assessment (LCA) results to communicate environmental performance, particularly about greenhouse gas emissions, have been witnessed. When undertaken appropriately, a full life-cycle approach is the only acceptable methodology to compare disparate technologies or products; however, given the often technical nature of LCA studies, the results are not always conveyed accurately in the non-technical mainstream media. This extended abstract discusses case studies related to the energy sector using LCA results—their benefits and shortcomings—in Australian media; suggestions for better communication and decision making in the coming period are also discussed.


Sign in / Sign up

Export Citation Format

Share Document