A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys

Author(s):  
Yan Song ◽  
Hongxiang Jiang ◽  
Lili Zhang ◽  
Shixin Li ◽  
Jiuzhou Zhao ◽  
...  
2009 ◽  
Vol 424 ◽  
pp. 43-50
Author(s):  
Farhad Parvizian ◽  
T. Kayser ◽  
Bob Svendsen

The purpose of this work is to predict the microstructure evolution of aluminum alloys during hot metal forming processes using the Finite Element Method (FEM). Here, the focus will be on the extrusion process of aluminum alloys. Several micromechanical mechanisms such as diffusion, recovery, recrystallization and grain growth are involved in various subsequent stages of the extrusion and the cooling process afterward. The evolution of microstructure parameters is motivated by plastic deformation and temperature. A number of thermomechanical aspects such as plastic deformation, heat transfer between the material and the container, heat generated by friction, and cooling process after the extrusion are involved in the extrusion process and result in changes in temperature and microstructure parameters subsequently. Therefore a thermomechanically coupled modeling and simulation which includes all of these aspects is required for an accurate prediction of the microstructure evolution. A brief explanation of the isotropic thermoelastic viscoplastic material model including some of the simulation results of this model, which is implemented as a user material (UMAT) in the FEM software ABAQUS, will be given. The microstructure variables are thereby modeled as internal state variables. The simulation results are finally compared with some experimental results.


2003 ◽  
Vol 52 (8) ◽  
pp. 981-987 ◽  
Author(s):  
Tomokazu MASUDA ◽  
Toshiro KOBAYASHI ◽  
Hiroyuki TODA ◽  
Lei WANG

Sign in / Sign up

Export Citation Format

Share Document