scholarly journals Effect of Cr content on the corrosion resistance of Ni–Cr–P coatings for PEMFC metallic bipolar plates

Author(s):  
Uttam K. Chanda ◽  
Satya Prakash Padhee ◽  
Anil D. Pathak ◽  
Sudesna Roy ◽  
Soobhankar Pati

Abstract In here, we report on the pulse electrodeposition of nickel–chromium–phosphorous (Ni–Cr–P) coatings on AISI 1020 low carbon steel using an aqueous electrolyte consisting of NiCl2, CrCl3, and NaH2PO2. We evaluated the effectiveness of Ni–Cr–P coatings for polymer electrolyte membrane fuel cell metallic bipolar plates. Coatings deposited at pH 3.0 and room temperature show nearly three orders improvement in corrosion resistance compared to bare AISI 1020. The corrosion current (Icorr) of Ni–Cr–P samples coated at 25 °C is 1.16 × 10−4 A/cm2, while that of bare carbon steel is 1.05 × 10−2 A/cm2. The improvement in corrosion resistance is due to the increase in Cr content in the Ni–Cr–P coatings. Cr forms a stable oxide barrier layer and inhibits pitting corrosion. The interfacial contact resistance increases with an increase in Cr content and immersion time in the corrosion media. The increase in interfacial contact resistance is also due to the formation of a stable oxide barrier.

2019 ◽  
Vol 41 (1) ◽  
pp. 1839-1852
Author(s):  
Leonard Bonville ◽  
H. R. Kunz ◽  
Ludwig Lipp ◽  
Joshua McCabe ◽  
Manoj Mahapatra ◽  
...  

2017 ◽  
Vol 20 (4) ◽  
pp. 169-173
Author(s):  
Huihui Zhang ◽  
Juntao Yuan ◽  
Ming Zhu

In order to reduce interfacial contact resistance (ICR) and enhance corrosion resistance of 310 stainless steel (310 SS) for bipolar plates (BPs) of polymer electrolyte membrane fuel cell (PEMFC), TiN with styrene-butadiene rubber (SBR) coating was prepared by using electrophoretic deposition. Microstructure of TiN-SBR coated 310 SS prepared under different conditions was characterized by scanning electron microscopy (SEM), and a uniform, dense and well-bonded TiN-SBR coating was prepared at 30 V for 10 s in the suspension liquid containing 6.0 g/L SBR. Polarization behavior in the simulated service environment of PEMFC (1 M H2SO4 at 298 K) and ICR of the TiN-SBR coating deposited under the optimized conditions were investigated. The results showed that the TiN-SBR coating successfully decreased the anodic polarization current and ICR, indicating excellent interfacial contact resistance and corrosion resistance.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2682
Author(s):  
Tereza Bohackova ◽  
Jakub Ludvik ◽  
Milan Kouril

The aim of this review is to summarize the possibilities of replacing graphite bipolar plates in fuel-cells. The review is mostly focused on metallic bipolar plates, which benefit from many properties required for fuel cells, viz. good mechanical properties, thermal and electrical conductivity, availability, and others. The main disadvantage of metals is that their corrosion resistance in the fuel-cell environment originates from the formation of a passive layer, which significantly increases interfacial contact resistance. Suitable coating systems prepared by a proper deposition method are eventually able to compensate for this disadvantage and make the replacement of graphite bipolar plates possible. This review compares coatings, materials, and deposition methods based on electrochemical measurements and contact resistance properties with respect to achieving appropriate parameters established by the DOE as objectives for 2020. An extraordinary number of studies have been performed, but only a minority of them provided promising results. One of these is the nanocrystalline β-Nb2N coating on AISI 430, prepared by the disproportionation reaction of Nb(IV) in molten salt, which satisfied the DOE 2020 objectives in terms of corrosion resistance and interfacial contact resistance. From other studies, TiN, CrN, NbC, TiC, or amorphous carbon-based coatings seem to be promising. This paper is novel in extracting important aspects for future studies and methods for testing the properties of metallic materials and factors affecting monitoring characteristics and parameters.


2019 ◽  
Vol 9 (12) ◽  
pp. 2568 ◽  
Author(s):  
Kun Shi ◽  
Xue Li ◽  
Yang Zhao ◽  
Wei-Wei Li ◽  
Shu-Bo Wang ◽  
...  

To improve corrosion resistance and electronic conductivity of bipolar plates for proton exchange membrane fuel cell (PEMFC), coatings of TiNb and TiNbN on 316L stainless steel (SS) were prepared by magnetron sputtering. X-ray diffraction (XRD) measurements confirmed the existence of metallic nitrides in the TiNbN coating. Scanning electron microscope (SEM) tests showed that the deposited coatings provided smooth surfaces. Further electrochemical measurements indicated that the corrosion resistance of TiNb coating was significantly higher than that of substrate. At 0.19 V vs MSE, the long-term stabilized current density of TiNb/316L SS was lower than 1 μA·cm−2. The interfacial contact resistance (ICR) values between coating and carbon paper suggested that TiNb and TiNbN films had better contact conductivity than 316L SS substrate. In conclusion, TiNb coated 316L SS metallic bipolar plate material is a promising option for PEMFC.


Sign in / Sign up

Export Citation Format

Share Document