Convergence and asymptotical stability of numerical solutions for neutral stochastic delay differential equations driven by G-Brownian motion

2018 ◽  
Vol 37 (4) ◽  
pp. 4301-4320 ◽  
Author(s):  
Guangjie Li ◽  
Qigui Yang
2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Haiyan Yuan

This paper is concerned with the numerical solutions of semilinear stochastic delay differential equations driven by G-Brownian motion (G-SLSDDEs). The existence and uniqueness of exact solutions of G-SLSDDEs are studied by using some inequalities and the Picard iteration scheme first. Then the numerical approximation of exponential Euler method for G-SLSDDEs is constructed, and the convergence and the stability of the numerical method are studied. It is proved that the exponential Euler method is convergent, and it can reproduce the stability of the analytical solution under some restrictions. Numerical experiments are presented to confirm the theoretical results.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Peiguang Wang ◽  
Yan Xu

In this paper, we investigate the stochastic averaging method for neutral stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H∈1/2,1. By using the linear operator theory and the pathwise approach, we show that the solutions of neutral stochastic delay differential equations converge to the solutions of the corresponding averaged stochastic delay differential equations. At last, an example is provided to illustrate the applications of the proposed results.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Qiyong Li ◽  
Siqing Gan

This paper is concerned with the stability of analytical and numerical solutions fornonlinearstochastic delay differential equations (SDDEs) with jumps. A sufficient condition for mean-square exponential stability of the exact solution is derived. Then, mean-square stability of the numerical solution is investigated. It is shown that the compensated stochastic θ methods inherit stability property of the exact solution. More precisely, the methods are mean-square stable for any stepsizeΔt=τ/mwhen1/2≤θ≤1, and they are exponentially mean-square stable if the stepsizeΔt∈(0,Δt0)when0≤θ<1. Finally, some numerical experiments are given to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document