Numerical solution of fuzzy Fredholm integro-differential equations by polynomial collocation method

2021 ◽  
Vol 40 (7) ◽  
Author(s):  
Suvankar Biswas ◽  
Sandip Moi ◽  
Smita Pal Sarkar
2015 ◽  
Vol 18 (1) ◽  
pp. 231-249 ◽  
Author(s):  
Zhendong Gu ◽  
Yanping Chen

Our main purpose in this paper is to propose the piecewise Legendre spectral-collocation method to solve Volterra integro-differential equations. We provide convergence analysis to show that the numerical errors in our method decay in$h^{m}N^{-m}$-version rate. These results are better than the piecewise polynomial collocation method and the global Legendre spectral-collocation method. The provided numerical examples confirm these theoretical results.


2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
F. Hosseini Shekarabi

One of the new techniques is used to solve numerical problems involving integral equations and ordinary differential equations known as Sinc collocation methods. This method has been shown to be an efficient numerical tool for finding solution. The construction mixed strategies evolutionary game can be transformed to an integrodifferential problem. Properties of the sinc procedure are utilized to reduce the computation of this integrodifferential to some algebraic equations. The method is applied to a few test examples to illustrate the accuracy and implementation of the method.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Francesco Costabile ◽  
Anna Napoli

A class of methods for the numerical solution of high-order differential equations with Lidstone and complementary Lidstone boundary conditions are presented. It is a collocation method which provides globally continuous differentiable solutions. Computation of the integrals which appear in the coefficients is generated by a recurrence formula. Numerical experiments support theoretical results.


Sign in / Sign up

Export Citation Format

Share Document