scholarly journals Sinc Collocation Method for Finding Numerical Solution of Integrodifferential Model Arisen in Continuous Mixed Strategy

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
F. Hosseini Shekarabi

One of the new techniques is used to solve numerical problems involving integral equations and ordinary differential equations known as Sinc collocation methods. This method has been shown to be an efficient numerical tool for finding solution. The construction mixed strategies evolutionary game can be transformed to an integrodifferential problem. Properties of the sinc procedure are utilized to reduce the computation of this integrodifferential to some algebraic equations. The method is applied to a few test examples to illustrate the accuracy and implementation of the method.

2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


2012 ◽  
Vol 09 (02) ◽  
pp. 1240031 ◽  
Author(s):  
BO-NAN JIANG

A least-squares meshfree collocation method is presented. The method is based on the first-order differential equations in order to result in a better conditioned linear algebraic equations, and to obtain the primary variables (displacements) and the dual variables (stresses) simultaneously with the same accuracy. The moving least-squares approximation is employed to construct the shape functions. The sum of squared residuals of both differential equations and boundary conditions at nodal points is minimized. The present method does not require any background mesh and additional evaluation points, and thus is a truly meshfree method. Unlike other collocation methods, the present method does not involve derivative boundary conditions, therefore no stabilization terms are needed, and the resulting stiffness matrix is symmetric positive definite. Numerical examples show that the proposed method possesses an optimal rate of convergence for both primary and dual variables, if the nodes are uniformly distributed. However, the present method is sensitive to the choice of the influence length. Numerical examples include one-dimensional diffusion and convection-diffusion problems, two-dimensional Poisson equation and linear elasticity problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


Sign in / Sign up

Export Citation Format

Share Document