Extended local and semilocal convergence for interpolatory iterative methods for nonlinear equations

SeMA Journal ◽  
2021 ◽  
Author(s):  
Ioannis K. Argyros ◽  
Stepan Shakhno ◽  
Halyna Yarmola
2020 ◽  
Vol 53 (1) ◽  
pp. 85-91
Author(s):  
H.P. Yarmola ◽  
I. K. Argyros ◽  
S.M. Shakhno

We provide a semilocal analysis of the Newton-Kurchatov method for solving nonlinear equations involving a splitting of an operator. Iterative methods have a limited restricted region in general. A convergence of this method is presented under classical Lipschitz conditions.The novelty of our paper lies in the fact that we obtain weaker sufficient semilocal convergence criteria and tighter error estimates than in earlier works. We find a more precise location than before where the iterates lie resulting to at least as small Lipschitz constants. Moreover, no additional computations are needed than before. Finally, we give results of numerical experiments.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650034
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for some families of fourth and sixth-order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies [V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing 45 (1990) 355–367; C. Chun, P. Stanica and B. Neta, Third order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011) 1665–1675; J. M. Gutiérrez and M. A. Hernández, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998) 1–8; M. A. Hernández and M. A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math. 126 (2000) 131–143; M. A. Hernández, Chebyshev’s approximation algorithms and applications, Comput. Math. Appl. 41 (2001) 433–455; M. A. Hernández, Second-derivative-free variant of the Chebyshev method for nonlinear equations, J. Optim. Theory Appl. 104(3) (2000) 501–515; J. L. Hueso, E. Martinez and C. Teruel, Convergence, efficiency and dynamics of new fourth and sixth-order families of iterative methods for nonlinear systems, J. Comput. Appl. Math. 275 (2015) 412–420; Á. A. Magre nán, Estudio de la dinámica del método de Newton amortiguado, Ph.D. thesis, Servicio de Publicaciones, Universidad de La Rioja (2013), http://dialnet.unirioja.es/servlet/tesis?codigo=38821 ; J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970); M. S. Petkovic, B. Neta, L. Petkovic and J. Džunič, Multi-Point Methods for Solving Nonlinear Equations (Elsevier, 2013); J. F. Traub, Iterative Methods for the Solution of Equations, Automatic Computation (Prentice-Hall, Englewood Cliffs, NJ, 1964); X. Wang and J. Kou, Semilocal convergence and [Formula: see text]-order for modified Chebyshev–Halley methods, Numer. Algorithms 64(1) (2013) 105–126] have used hypotheses on the fourth Fréchet derivative of the operator involved. We use hypotheses only on the first Fréchet derivative in our local convergence analysis. This way, the applicability of these methods is extended. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples illustrating the theoretical results are also presented in this study.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 128 ◽  
Author(s):  
Ioannis Argyros ◽  
Stepan Shakhno ◽  
Halyna Yarmola

In this paper we present a two-step solver for nonlinear equations with a nondifferentiable operator. This method is based on two methods of order of convergence 1 + 2 . We study the local and a semilocal convergence using weaker conditions in order to extend the applicability of the solver. Finally, we present the numerical example that confirms the theoretical results.


2007 ◽  
Vol 48 (3) ◽  
pp. 343-359 ◽  
Author(s):  
Sergio Amat ◽  
Sonia Busquier ◽  
Sergio Plaza

AbstractWe study the dynamics of a family of third-order iterative methods that are used to find roots of nonlinear equations applied to complex polynomials of degrees three and four. This family includes, as particular cases, the Chebyshev, the Halley and the super-Halleyroot-finding algorithms, as well as the so-called c-methods. The conjugacy classes of theseiterative methods are found explicitly.


Sign in / Sign up

Export Citation Format

Share Document