Discrete model to estimate nucleate boiling heat transfer coefficient with gasoline using a double-log-normal distribution function

Author(s):  
Arlindo Theodoro de Souza Netto ◽  
Arthur Vieira da Silva Oliveira ◽  
Rogério Gonçalves dos Santos
2012 ◽  
Vol 550-553 ◽  
pp. 2913-2916 ◽  
Author(s):  
Jin Liang Tao ◽  
Xin Liang Wang ◽  
Pei Hua Shi ◽  
Xiao Ping Shi

In this paper, a new porous coating was formed directly on the surface of titanium metal via anodic oxidation. And by the SEM, the morphology of the coating, which is composed of well-ordered perpendicular nanotubes, was characterized. Moreover, taking deionized water as the test fluid, a visualization study of the coating on its pool boiling heat transfer performance was made. The results demonstrated that compared with the smooth surface, the nucleate boiling heat transfer coefficient can increase 3 times while the nucleate boiling super heat was reduced 30%.


Author(s):  
Y. F. Xue ◽  
M. Z. Yuan ◽  
J. J. Wei

Experiments of flow boiling heat transfer coefficient of FC-72 were carried out over simulated silicon chip of 10×10×0.5 mm3 for electronic cooling. Four kinds of micro-pin-fins with the dimensions of 30×60, 30×120, 50×60, 50×120 μm2 (thickness, t × height, h) respectively, were fabricated on the chip surfaces by the dry etching technique to enhance boiling heat transfer. A smooth chip was also tested for comparison. The experiments were conducted at three different fluid velocities (0.5, 1 and 2m/s) and three different liquid subcoolings (15, 25 and 35K). All micro-pin-finned surfaces show a considerable heat transfer enhancement compared to the smooth surface. Both the forced convection and nucleate boiling heat transfer contribute to the total heat transfer performance. The contribution of each factor to the total heat transfer has been clearly presented in the flow boiling heat transfer coefficient curves. In a lower heat flux region, the heat transfer coefficient increases greatly with increasing fluid velocity, but increases slightly with increasing heat flux, indicating that the single-phase forced convection dominates the heat transfer process. With further increasing heat flux to the onset of nucleate boiling, the heat transfer coefficient increases remarkably. For a given liquid subcooling, the curves of flow boiling heat transfer coefficient at fluid velocities of 0.5 and 1 m/s almost follow one line for each surface, showing insensitivity of nucleate boiling heat transfer to fluid velocity. However, at the largest fluid velocity of 2 m/s, the slope of the flow boiling heat transfer coefficient curves for micro-pin-finned surfaces becomes smaller, indicating that the forced convection also plays an important role besides the nucleate boiling heat transfer. The curves of the flow boiling heat transfer coefficient can be used to determine the boiling incipience at different fluid velocities, which provides a basis for the suitable fluid velocity selection in designing highly efficient cooling scheme for electronic devices.


Author(s):  
Jack L. Parker ◽  
Mohamed S. El-Genk

Saturation pool boiling experiments of FC-72 liquid on a flat, porous graphite and smooth copper surfaces measuring 10 × 10 mm investigated the effect of surface orientation on nucleate boiling and Critical Heat Flux (CHF). The inclination angle of the surface increased from 0° (upward-facing) to 60°, 90°, 120°, 150°, and 180° (downward facing). Results demonstrated significant increases in the nucleate boiling heat transfer coefficient and CHF on porous graphite, compared to those on copper. At low surface superheats, increasing the inclination angle increases the nucleate boiling heat transfer coefficient, which decreases with increased inclination angle at high surface superheats. These results and the measured decreases of CHF with increased inclination angle are consistent with those reported earlier by other investigators for dielectric and non-dielectric liquids. On smooth surfaces and micro-porous coatings, the reported fractional decreases in CHF with increased inclination angle are almost identical, but markedly larger than those measured in this work on porous graphite. On these surfaces the reported CHF in the downward-facing position (180° inclination) is ∼10–20% of that in the upward-facing position (0° inclination), compared to ∼53.3% on porous graphite. The CHF values of FC-72 liquid on porous graphite, which also decreased with increased inclination angle, are correlated using the general form suggested by Kutatelatze (1961) to within ± 5% of the experimental data.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Mohamed S. El-Genk ◽  
Amir F. Ali

Experiments are performed to investigate saturation boiling of degassed PF-5060 dielectric liquid on microporous copper dendrite surface layers deposited on 10×10 mm2 Cu substrates. The electrochemically deposited surface layers are of different thicknesses (145.6 μm, 46.3 μm, and 33.1 μm). The thickest layer gives the best results: the saturation CHF of 25.27 W/cm2 occurs at a surface superheat of only 2.9 K and the maximum nucleate boiling heat transfer coefficient, hMNB, near the end of the fully developed nucleate boiling region, is 8.76 W/cm2 K. In addition, nucleate boiling ensues at a surface temperature slightly above saturation (<0.5 K), with no temperature excursion. The temperature excursions before initiating boiling on the 46.3 μm and 33.1 μm thick Cu nanodendrite surface layers are small (3.7 K and 6 K), corresponding to surface temperatures of ∼55.1°C and 57.4°C, respectively. These temperatures are much lower than recommended (85°C) for reliable operation of most silicon electronics and central processor units.


Author(s):  
Joo H. Kim ◽  
Madhav R. Kashinath ◽  
Sang M. Kwark ◽  
Seung M. You

The present research is an experimental study for the enhancement of boiling heat transfer using microporous coating techniques. The effects of different metal particle sizes in the coating compound for microporous coatings on pool boiling performance of refrigerants and water are investigated. All boiling tests were performed with 1×1cm2 test heaters in the horizontal, upward-facing orientation under increasing heat flux conditions at atmospheric pressure in saturated R-123, FC-72, and water. Results showed that the enhanced surface by microporous coating technique significantly augmented both nucleate boiling heat transfer coefficient and critical heat flux of FC-72 and R-123 over a plain surface. However, the enhancement of boiling performance for water was comparatively insignificant compared to the other liquids.


Author(s):  
Mohamed S. El-Genk ◽  
Mahyar Pourghasemi

Abstract Pool boiling experiments are performed to investigate the effects of inclination angle, θ, and average roughness, Ra, of uniformly heated 10 × 10 mm copper surfaces on saturation boiling of HFE-7000 dielectric liquid. Ra varied from 0.039 to 0.1.44 μm and θ from 0° (upward facing) to 180° (downward facing). In addition, high speed images and still photographs of nucleate boiling in the various regions and near CHF are captured to assist the interpretation of experimental results. The values of CHF and the maximum nucleate boiling heat transfer coefficient, hMNB, which occurs near the fully developed nucleate boiling region, increase with increasing Ra and/or decreasing θ. The corresponding surface superheats, however, decrease with increasing θ and/or Ra. In the upward facing orientation, CHF increases from ∼20.7 to ∼30.9 W/cm2 with increasing Ra from 0.039 to 0.144 μm, and the corresponding CHF values in the downward facing orientation are 7.1 and 8.9 W/cm2, respectively. Nucleate boiling heat transfer coefficient, hNB, in the discrete bubbles region at low surface superheats increases, while in the fully developed nucleate boiling region at high superheats it increases with increasing Ra and/or decreasing θ. The developed correlations for CHF and hMNB and corresponding superheats, as functions of Ra and θ, are in good agreement with the experimental data.


Author(s):  
Kwang-Il Choi ◽  
Maulana Rifaldi ◽  
Agus S. Pamitran ◽  
Jong-Taek Oh

An experimental investigation on the characteristics of two-phase boiling heat transfer of NH3, C3H8 and CO2 in horizontal small stainless steel tubes of 1.5 and 3.0 mm inner diameters are presented in this paper. Experimental data were obtained over a heat flux range of 5 to 70 kW/m2, mass flux range of 50 to 600 kg/m2s, saturation temperature range of 0 to 12°C, and quality up to 1.0. The test section was heated uniformly by applying an electric current to the tubes directly. Nucleate boiling heat transfer was the main contribution, particularly at the low quality region. Laminar flow was observed in the small tubes. The heat transfer coefficient of the present working refrigerants was compared with other correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in small tubes was developed.


Sign in / Sign up

Export Citation Format

Share Document