cu substrates
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 57)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sujin Lee ◽  
Byungjoon Min ◽  
Junhyeok Bang

Abstract The physical and chemical properties of atomically thin two-dimensional (2D) materials can be modified by the substrates. In this study, the substrate effect on the electrocatalytic hydrogen evolution reaction (HER) in 2D Mo2C monolayers was investigated using first principles calculations. The isolated Mo2C monolayer shows large variation in HER activity depending on hydrogen coverage: it has relatively low activity at low hydrogen coverage but high activity at high hydrogen coverage. Ag, Au, Cu, and graphene were used as substrates to study the substrate effect. While the effects of the Au and graphene substrates on the HER activity are insignificant, Ag and Cu substrates improve the HRE activity, especially at low hydrogen coverage, by modifying the valence electrons in the Mo2C layer; therefore, the HER activity of the Mo2C monolayer becomes high for any hydrogen coverage. Our results suggest that, in two-dimensional electrocatalysis, the substrate has a degree of freedom to tune the catalytic activity.


2021 ◽  
Vol 21 (8) ◽  
pp. 4503-4507
Author(s):  
Seong Min Yun ◽  
Injoon Son ◽  
Sung Hwa Bae

In thermoelectric modules, multiple n-type and p-type thermoelectric elements are electrically connected in series on a Cu electrode that is bonded to a ceramic substrate. Defects in the bond between the thermoelectric elements and the Cu electrode could impact the performance of the entire thermoelectric module. This study investigated the effect of plating layers on the bonding strength of p-type Bi–Te thermoelectric elements. Ni and Pd electroplating was applied to Bi–Te thermoelectric elements; further, electroless Ni–P immersion gold (ENIG) plating was applied to Cu electrodes bonded to ceramic substrates. Forming a Pd/Ni electroplating layer on the surface of thermoelectric elements and an ENIG plating layer on the surface of the Cu electrode improved the bonding strength by approximately 3.5 times. When the Pd/Ni and ENIG plating layers were formed on Bi–Te elements and Cu substrates, respectively, the solderability greatly increased; as the solderability increased, the thickness of the diffusion layer formed with the solder layer increased. The improved bonding strength of the Pd/Ni plated thermoelectric element bonded on the ENIG plated substrate is attributed to the enhanced solderability due to the rapid inter-diffusion of Pd and Au into the solder layer and the formation of a stable and non-defected solder reaction interface layer.


2021 ◽  
Author(s):  
Panteha Fallah ◽  
Stephen Yue ◽  
André McDonald

Abstract A previous study showed that Cu can be cold sprayed onto carbon fiber-reinforced polymers (CFRPs) if a Cu interlayer is deposited prior to low-pressure cold spraying. In this present study, Cu was cold sprayed onto CFRP substrates that were coated with either Sn (cold spray) or Ni electroplating. Two layers of Cu powder were also cold sprayed onto a Cu-plated CFRP substrate to investigate the effect of a second particle layer on impacting particles. Test results showed that the relative hardness between the particle and substrate has a major effect on deformability, impact mode, and deposition efficiency (DE), which explains why Cu could not be cold sprayed onto Sn or Ni interlayers and why the deposition efficiency of Cu-on-Cu substrates is lower than that of one pass spraying. In summary, the results suggest that Cu can be successfully cold sprayed at low pressures onto electroplated Cu due to their similarity in hardness.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
F Sun ◽  
Zhen Pan ◽  
Yang Liu ◽  
Xiang Li ◽  
Haoyu Liu ◽  
...  

Purpose The purpose of this paper is to quickly manufacture full Cu3Sn-microporous copper composite joints for high-temperature power electronics applications and study the microstructure evolution and the shear strength of Cu3Sn at different bonding times. Design/methodology/approach In this paper, a novel structure of Cu/composite solder sheet/Cu was designed. The composite solder sheet was made of microporous copper filled with Sn. The composite joint was bonded by thermo-compression bonding under pressure of 0.6 MPa at 300°C. The microstructure evolution and the growth behavior of Cu3Sn at different bonding times were observed by electron microscope and metallographic microscope. The shear strength of the joint was measured by shear machine. Findings At initial bonding stage the copper atoms in the substrate and the copper atoms in the microporous copper dissolved into the liquid Sn. Then the scallop-liked Cu6Sn5 phases formed at the interface of liquid Sn/microporous copper and liquid Sn/Cu substrates. During the liquid Sn changing to Cu6Sn5 phases, Cu3Sn phases formed and grew at the interface of Cu6Sn5/Cu substrates and Cu6Sn5/microporous copper. After that the Cu3Sn phases continued to grow and the Cu3Sn-microporous copper composite joint with a thickness of 100 µm was successfully obtained. The growth rule of Cu3Sn was parabolic growth. The shear strength of the composite joints was about 155 MPa. Originality/value This paper presents a novel full Cu3Sn-microporous copper composite joint with high shear strength for high-temperature applications based on transient liquid phase bonding. The microstructure evolution and the growth behavior of Cu3Sn in the composite joints were studied. The shear strength and the fracture mechanism of the composite joints were studied.


Author(s):  
Jacopo Pascucci ◽  
Fosca Conti ◽  
Sri Krishna Bhogaraju ◽  
Raffaella Signorini ◽  
E. Liu ◽  
...  
Keyword(s):  

Author(s):  
Mario Kurniawan ◽  
Michael Stich ◽  
Mayra Marimon ◽  
Magali Camargo ◽  
Ralf Peipmann ◽  
...  

Abstract Photoelectrochemical (PEC) water splitting can be an efficient and economically feasible alternative for hydrogen production if easily processed photoelectrodes made of inexpensive and abundant materials are employed. Here, we present the preparation of porous Cu2O photocathodes with good PEC performance using solely inexpensive electrodeposition methods. Firstly, porous Cu structures with delicate pore networks were deposited on flat Cu substrates employing hydrogen-bubble-assisted Cu deposition. In a second electrodeposition step, the porous Cu structures were mechanically reinforced and subsequently detached from the substrates to obtain free-standing porous frameworks. In a third and final step, photoactive Cu2O films were electrodeposited. The PEC water splitting performance in 0.5 M Na2SO4 (pH ∼6) shows that these photocathodes have photocurrents of up to −2.25 mA cm−2 at 0 V versus RHE while maintaining a low dark current. In contrast, the Cu2O deposited on a flat Cu sample showed photocurrents only up to −1.25 mA cm−2. This performance increase results from the significantly higher reactive surface area while maintaining a thin and homogeneous Cu2O layer with small grain sizes and therefore higher hole concentrations as determined by Mott-Schottky analysis. The free-standing porous Cu2O samples show a direct optical transmittance of 23% (λ = 400–800 nm) and can therefore be used in tandem structures with a photoanode in full PEC cells. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document