scholarly journals Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems

Author(s):  
Ekaterina Kochmar ◽  
Dung Do Vu ◽  
Robert Belfer ◽  
Varun Gupta ◽  
Iulian Vlad Serban ◽  
...  

AbstractIntelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we investigate how feedback in a large-scale ITS can be automatically generated in a data-driven way, and more specifically how personalization of feedback can lead to improvements in student performance outcomes. First, in this paper we propose a machine learning approach to generate personalized feedback in an automated way, which takes individual needs of students into account, while alleviating the need of expert intervention and design of hand-crafted rules. We leverage state-of-the-art machine learning and natural language processing techniques to provide students with personalized feedback using hints and Wikipedia-based explanations. Second, we demonstrate that personalized feedback leads to improved success rates at solving exercises in practice: our personalized feedback model is used in , a large-scale dialogue-based ITS with around 20,000 students launched in 2019. We present the results of experiments with students and show that the automated, data-driven, personalized feedback leads to a significant overall improvement of 22.95% in student performance outcomes and substantial improvements in the subjective evaluation of the feedback.

AI Magazine ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 42-54 ◽  
Author(s):  
Vasile Rus ◽  
Sidney D’Mello ◽  
Xiangen Hu ◽  
Arthur Graesser

We report recent advances in intelligent tutoring systems with conversational dialogue. We highlight progress in terms of macro and microadaptivity. Macroadaptivity refers to a system’s capability to select appropriate instructional tasks for the learner to work on. Microadaptivity refers to a system’s capability to adapt its scaffolding while the learner is working on a particular task. The advances in macro and microadaptivity that are presented here were made possible by the use of learning progressions, deeper dialogue and natural language processing techniques, and by the use of affect-enabled components. Learning progressions and deeper dialogue and natural language processing techniques are key features of DeepTutor, the first intelligent tutoring system based on learning progressions. These improvements extend the bandwidth of possibilities for tailoring instruction to each individual student which is needed for maximizing engagement and ultimately learning.


2018 ◽  
Vol 5 (3) ◽  
pp. 79-112
Author(s):  
Francisco S Melo ◽  
Samuel Mascarenhas ◽  
Ana Paiva

This paper provides a short introduction to the field of machine learning for interactive pedagogical systems. Departing from different examples encountered in interactive pedagogical systems—such as intelligent tutoring systems or serious games—we go over several representative families of methods in machine learning, introducing key concepts in this field. We discuss common challenges in machine learning and how current methods address such challenges. Conversely, by anchoring our presentation on actual interactive pedagogical systems, highlight how machine learning can benefit the development of such systems.


Recent studies have shown that Matrix Factorization (MF) method, deriving from recommendation systems, can predict student performance as part of Intelligent Tutoring Systems (ITS). In order to improve the accuracy of this method, we hypothesize that taking into account the mutual influence effect in the relations of student groups would be a major asset. This criterion, coupled with those of the different relationships between the students, the tasks and the skills, would thus be essential elements for a better performance prediction in order to make personalized recommendations in the ITS. This paper proposes an approach for Predicting Student Performance (PSP) that integrates not only friendship relationships such as workgroup relationships, but also mutual influence values into the Weighted Multi-Relational Matrix Factorization method. By applying the Root Mean Squared Error (RMSE) metric to our model, experimental results from KDD Challenge 2010 database show that this approach allows to refine student performance prediction accuracy.


2013 ◽  
Vol 31 (2) ◽  
pp. 274-293 ◽  
Author(s):  
Mu‐Jung Huang ◽  
Heien‐Kun Chiang ◽  
Pei‐Fen Wu ◽  
Yu‐Jung Hsieh

Author(s):  
Ani Grubišic

As the acquisition of knowledge is often an expensive and time-consuming process, it is important to know whether it actually improves the student performance. The e-learning is a revolutionary paradigm that has lately been significantly evolving and it is closely related to the intelligent tutoring systems. Methodology for evaluating the educational influence of learning and teaching process, questions whether and in what amount, students learn effectively. Our contribution to this compulsive field of research is a meta-analysis of a series of experiments based on the same two-group methodology that reveals a more precise effect size of one particular e-learning system - eXtended Tutor-Expert System, a representative of web-based authoring shells for building intelligent tutoring systems.


Author(s):  
Chutima Boonthum-Denecke ◽  
Irwin B. Levinstein ◽  
Danielle S. McNamara ◽  
Joseph P. Magliano ◽  
Keith K. Millis

Many Intelligent Tutoring Systems (ITSs) aim to help students become better readers. The computational challenges involved are (1) to assess the students’ natural language inputs and (2) to provide appropriate feedback and guide students through the ITS curriculum. To overcome both challenges, the following non-structural Natural Language Processing (NLP) techniques have been explored and the first two are already in use: word-matching (WM), latent semantic analysis (LSA, Landauer, Foltz, & Laham, 1998), and topic models (TM, Steyvers & Griffiths, 2007). This article describes these NLP techniques, the iSTART (Strategy Trainer for Active Reading and Thinking, McNamara, Levinstein, & Boonthum, 2004) intelligent tutor and the related Reading Strategies Assessment Tool (R-SAT, Magliano et al., 2006), and how these NLP techniques can be used in assessing students’ input in iSTART and R-SAT. This article also discusses other related NLP techniques which are used in other applications and may be of use in the assessment tools or intelligent tutoring systems.


2016 ◽  
Vol 6 (4) ◽  
pp. 12 ◽  
Author(s):  
Marios Pappas ◽  
Athanasios Drigas

Intelligent Tutoring Systems incorporate Artificial Intelligence techniques, in order to imitate a human tutor. These expert systems are able to assess student’s proficiency, to provide solved examples and exercises for practice in each topic, as well as to provide immediate and personalized feedback to learners. The present study is a systematic review that evaluates the contribution of the Intelligent Tutoring Systems developed so far, to Mathematics Education, representing some of the most representative studies of the last decade.


Sign in / Sign up

Export Citation Format

Share Document