Moisture Mode Theory’s Contribution to Advances in our Understanding of the Madden-Julian Oscillation and Other Tropical Disturbances

Author(s):  
Ángel F. Adames ◽  
Eric D. Maloney
2018 ◽  
Vol 31 (11) ◽  
pp. 4215-4224 ◽  
Author(s):  
Xianan Jiang ◽  
Ángel F. Adames ◽  
Ming Zhao ◽  
Duane Waliser ◽  
Eric Maloney

The Madden–Julian oscillation (MJO) exhibits pronounced seasonality. While it is largely characterized by equatorially eastward propagation during the boreal winter, MJO convection undergoes marked poleward movement over the Asian monsoon region during summer, producing a significant modulation of monsoon rainfall. In classical MJO theories that seek to interpret the distinct seasonality in MJO propagation features, the role of equatorial wave dynamics has been emphasized for its eastward propagation, whereas coupling between MJO convection and the mean monsoon flow is considered essential for its northward propagation. In this study, a unified physical framework based on the moisture mode theory, is offered to explain the seasonality in MJO propagation. Moistening and drying caused by horizontal advection of the lower-tropospheric mean moisture by MJO winds, which was recently found to be critical for the eastward propagation of the winter MJO, is also shown to play a dominant role in operating the northward propagation of the summer MJO. The seasonal variations in the mean moisture pattern largely shape the distinct MJO propagation in different seasons. The critical role of the seasonally varying climatological distribution of moisture for the MJO propagation is further supported by the close association between model skill in representing the MJO propagation and skill at producing the lower-tropospheric mean moisture pattern. This study thus pinpoints an important direction for climate model development for improved MJO representation during all seasons.


2009 ◽  
Vol 22 (11) ◽  
pp. 3031-3046 ◽  
Author(s):  
David J. Raymond ◽  
Željka Fuchs

Abstract Moisture mode instability is thought to occur in the tropical oceanic atmosphere when precipitation is a strongly increasing function of saturation fraction (precipitable water divided by saturated precipitable water) and when convection acts to increase the saturation fraction. A highly simplified model of the interaction between convection and large-scale flows in the tropics suggests that there are two types of convectively coupled disturbances: the moisture mode instability described above and another unstable mode dependent on fluctuations in the convective inhibition. The latter is associated with rapidly moving disturbances such as the equatorially coupled Kelvin wave. A toy aquaplanet beta-plane model with realistic sea surface temperatures produces a robust Madden–Julian oscillation–like disturbance that resembles the observed phenomenon in many ways. Convection in this model exhibits a strong dependence of precipitation on saturation fraction and does indeed act to increase this parameter in situations of weak environmental ventilation of disturbances, thus satisfying the criteria for moisture mode instability. In contrast, NCEP’s closely related Global Forecast System (GFS) and Climate Forecast System (CFS) models do not produce a realistic MJO. Investigation of moist entropy transport in NCEP’s final analysis (FNL), the data assimilation system feeding the GFS, indicates that convection tends to decrease the saturation fraction in these models, precluding moisture mode instability in most circumstances. Thus, evidence from a variety of sources suggests that the MJO is driven at least in part by moisture mode instability.


2014 ◽  
Vol 71 (2) ◽  
pp. 800-815 ◽  
Author(s):  
Michael S. Pritchard ◽  
Christopher S. Bretherton

Abstract The authors investigate the hypothesis that horizontal moisture advection is critical to the eastward propagation of the Madden–Julian oscillation (MJO). Consistent diagnostic evidence has been found in recent MJO-permitting global models viewed from the moisture-mode dynamical paradigm. To test this idea in a causal sense, tropical moisture advection by vorticity anomalies is artificially modulated in a superparameterized global model known to produce a realistic MJO signal. Boosting horizontal moisture advection by tropical vorticity anomalies accelerates and amplifies the simulated MJO in tandem with reduced environmental gross moist stability. Limiting rotational horizontal moisture advection shuts the MJO down. These sensitivities are robust in that they are nearly monotonic with respect to the control parameter and emerge despite basic-state sensitivities favoring the opposite response. Speedup confirms what several diagnostic lines of evidence already suggest—that anomalous moisture advection is fundamental to MJO propagation. The rotational component is shown to be especially critical. Amplification further suggests it may play a role in adiabatically maintaining the MJO.


2021 ◽  
Vol 34 (2) ◽  
pp. 839-853
Author(s):  
Feng Hu ◽  
Tim Li ◽  
Jianyun Gao ◽  
Lisheng Hao

AbstractTwo existing moisture mode theories of the MJO, one emphasizing boundary layer moisture asymmetry (MA) and the other emphasizing column-integrated moist static energy (MSE) tendency asymmetry (TA), were validated with the diagnosis of observational data during 1979–2012. A total of 2343 MJO days are selected. While all these days show a clear phase leading of the boundary layer moisture, 20% of these days do not show a positive column-integrated MSE tendency in front of MJO convection (non-TA). A further MSE budget analysis indicates that the difference between the non-TA composite and the TA composite lies in the zonal extent of anomalously vertical overturning circulation in front of the MJO convection. A background mean precipitation modulation mechanism is proposed to explain the distinctive circulation responses. Dependent on the MJO location, an anomalous Gill response to the heating is greatly modulated by the seasonal mean and ENSO induced precipitation fields. Despite the negative MSE tendency in front of MJO convection in the non-TA group, the system continues moving eastward due to the effect of the boundary layer moistening, which promotes a convectively unstable stratification ahead of MJO convection. The analysis result suggests that the first type of moisture mode theories, the moisture asymmetry mechanism, appears more robust, particularly over the eastern Maritime Continent and western Pacific.


2016 ◽  
Vol 29 (13) ◽  
pp. 4995-5008 ◽  
Author(s):  
Michael S. Pritchard ◽  
Da Yang

Abstract The climate sensitivity of the Madden–Julian oscillation (MJO) is measured across a broad range of temperatures (1°–35°C) using a convection-permitting global climate model with homogenous sea surface temperatures. An MJO-like signal is found to be resilient in all simulations. These results are used to investigate two ideas related to the modern “moisture mode” view of MJO dynamics. The first hypothesis is that the MJO has dynamics analogous to a form of radiative convective self-aggregation in which longwave energy maintenance mechanisms shut down for SST ≪ 25°C. Inconsistent with this hypothesis, the explicitly simulated MJO survives cooling and retains leading moist static energy (MSE) budget terms associated with longwave destabilization even at SST < 10°C. Thus, if the MJO is a form of longwave-assisted self-aggregation, it is not one that is temperature critical, as is observed in some cases of radiative–convective equilibrium (RCE) self-aggregation. The second hypothesis is that the MJO is propagated by horizontal advection of column MSE. Inconsistent with this view, the simulated MJO survives reversal of meridional moisture gradients in the basic state and a striking role for horizontal MSE advection in its propagation energy budget cannot be detected. Rather, its eastward motion is balanced by vertical MSE advection reminiscent of gravity or Kelvin wave dynamics. These findings could suggest a tight relation between the MJO and classic equatorial waves, which would tend to challenge moisture mode views of MJO dynamics that assume horizontal moisture advection as the MJO’s propagator. The simulation suite provides new opportunities for testing predictions from MJO theory across a broad climate regime.


2019 ◽  
Vol 10 (4) ◽  
Author(s):  
M. Zakharenko ◽  
◽  
V. Olynyk ◽  
V. Polyakovsky ◽  
V. Solomon ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 183-183
Author(s):  
Baird Langenbrunner

Climate ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Patrick Haertel

The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component.


Sign in / Sign up

Export Citation Format

Share Document