wave component
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 936 (1) ◽  
pp. 012029
Author(s):  
Zahroh Arsy Udama ◽  
Ira Mutiara Anjasmara ◽  
Arisauna Maulidyan Pahlevi ◽  
Anas Sharafeldin Mohamed Osman

Abstract The availability of geoids, especially in survey and mapping activities, is useful for transforming the geometric heights obtained from observations of the Global Navigation Satellite System (GNSS) into orthometric heights that have real physical meanings such as those obtained from waterpass measurements. If a geoid is available, the orthometric heights of points on earth can be determined using the GNSS heighting method. The use of modern survey and mapping instruments based on satellite observations such as GNSS is more efficient in terms of time, effort, and cost compared to the accurate waterpass method. According to the Indonesian Geospatial Information Agency (BIG) it is stated that the application of geoid as a national Vertical Geospatial Reference System has an adequate and ideal category if the accuracy is higher than 15 cm. Recent studies have shown that it is possible to generate local geoid models with centimetre accuracy by utilizing airborne gravity data. We calculate free-air gravity anomaly data is calculated by processing airborne gravity and GNSS data using the Stokes Integral method on AGR software. Next a geoid model is created by calculating the contribution of three components, namely the long wave component represented by the EGM2008 global geoid data model, the shortwave component represented by the Shuttle Radar Topography Mission (SRTM) data and the medium wave component represented by the free-air gravity anomaly data. The geoid model validation was carried out using the geoid fitting method for geoid accuracy by calculating the difference between the gravimetric geoid and the geometric geoid and comparing it with the global geoid model EGM2008 degrees 2190. As a result, the total geoid model accuracy value was determined to be 49.4 cm on gravimetric geoid undulations with a standard deviation of 7.1 cm. Meanwhile, the results of the EGM2008 geoid undulation accuracy test at 2190 degrees resulted in an accuracy of 51.9 cm with a standard deviation of 9.9 cm. These results indicate that the local geoid model from airborne gravity measurement data produces a geoid model with a higher accuracy than the global geoid model EGM2008 degrees 2190. However, the accuracy of the resulting data is still below the BIG standard of 15 cm, so further research is needed to produce a geoid model which conforms to the standard.


InterConf ◽  
2021 ◽  
pp. 283-288
Author(s):  
Галина Грінберг

A general problems and methods for stock market statistical analysis are analyzed. A new method for stock price forecasting problem is considered based on a time series structural decomposition approach realized in special assignment of wave component auto-regression model as a superposition of harmonics with tuning frequencies. Computer simulation has been fulfilled in order to evaluate the performance of proposed method and algorithms.


2021 ◽  
Author(s):  
Azam Gholami ◽  
Raheel Ahmad ◽  
Albert J Bae ◽  
Alain Pumir ◽  
Eberhard Bodenschatz

The beating of cilia and flagella is essential to perform many important biological functions, including generating fluid flows on the cell surface or propulsion of micro-organisms. In this work, we analyze the motion of isolated and demembranated flagella from green algae Chlamydomonas reinhardtii, which act as ATP-driven micro-swimmers. The waveform of the Chlamydomonas beating flagella has an asymmetric waveform that is known to involve the superposition of a static component, corresponding to a fixed, intrinsic curvature, and a dynamic wave component traveling in the base-to-tip direction at the fundamental beat frequency, plus higher harmonics. Here, we demonstrate that these modes are not sufficient to reproduce the observed flagella waveforms. We find that two extra modes play an essential role to describe the motion: first, a time-symmetric mode, which corresponds to a global oscillation of the axonemal curvature, and second, a secondary tip-to-base wave component at the fundamental frequency that propagates opposite to the dominant base-to-tip wave, albeit with a smaller amplitude. Although the time-symmetric mode cannot, by itself, contribute to propulsion (scallop theorem), it does enhance the translational and rotational velocities of the flagellum by approximately a factor of 2. This mode highlights a long-range coupled on/off activity of force-generating dynein motors and can provide further insight into the underling biology of the ciliary beat.


2021 ◽  
Vol 273 ◽  
pp. 01003
Author(s):  
Mikhail Belyakov ◽  
Elena Sokolova ◽  
Valentina Listratenkova ◽  
Nina Ruzanova ◽  
Leonid Kashko

The development of technology for objectively determining the ripeness of plant seeds is an urgent task of modern agricultural production. An alternative to existing methods is optical photoluminescent technology, which is characterized by high accuracy, selectivity, expressiveness, as well as being remote and non-destructive. The spectral characteristics of excitation and photoluminescence of wheat, oat, and corn seeds during their maturation were measured using a spectrofluorometer using a previously developed technique. It was found that during maturation, the short-wave component of the excitation spectra decreases (λs=362 nm) and the long-wave component increases (λl=485 nm). After measuring the luminescence spectra, the integral photoluminescence fluxes for long-wave and short-wave excitation, as well as their ratio, were determined. We have obtained statistically reliable linear regression models of the dependence of long-wave and short-wave photoluminescence flows on the maturation time. Based on the obtained dependencies, a technology was developed for determining the degree of physiological maturation and making decisions about harvesting ripe seeds. It includes sample preparation, excitation and registration of luminescent radiation, amplification of the received signals and their relations, obtaining information about the degree of ripeness taking into account a priori dependencies.


Climate ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Patrick Haertel

The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component.


2020 ◽  
Author(s):  
Mark Zilberman

This article describes the "Dimming effect" that is produced by the Doppler effect applied to a quantity of individual photons arriving to a receiver from a moving source of light. The corpuscular-wave dualism of light suggests that the well-known Doppler effect, which is currently applied only to the wave component of light, should also be considered for the corpuscular component of light. Application of the Doppler effect on a quantity of photons leads to the "Dimming Effect" - as the faster light source is moving away from observer - the dimmer its brightness appears. While the described dimming effect is negligible for low-speed light sources, it becomes significant for light sources with a velocity comparable to light speed in a vacuum. The relativistic adjustments for time dilation cause the described dimming effect to be even stronger. For example, the "Dimming Effect" for an object moving away from the observer with the speed 0.1c is 0.904 and for an object moving away from the observer with the speed 0.5c is 0.577. Article also provides the formula for the calculation of "Dimming effect" values using the red-shift parameter Z widely used in astronomy as N/N0=1/(Z+1). If confirmed, the "Dimming effect" must be taken into account in calculations of astronomical "Standard Candles" and in particular in the "Supernova Cosmology Project", which has claimed the acceleration of the Universe's expansion and led to the introduction of dark energy.


2020 ◽  
pp. 2150103
Author(s):  
Hao Sui ◽  
Kesi Li ◽  
Zhenyu Zhu ◽  
Le Cheng ◽  
Xiaorong Gao ◽  
...  

To verify the performance of longitudinal waves induced by laser phased arrays (LPA) for detection and quantitative evaluation in internal defects, the finite element method (FEM) is utilized to establish the models of LPA scanning processing. The interaction of longitudinal wave and internal defect is analyzed. Besides, the two components of the reflected longitudinal waves (the longitudinal wave component [Formula: see text] and the shear wave component [Formula: see text] are focused on the imaging of defects with the synthetic aperture focusing technique (SAFT) and total focusing method (TFM) algorithms. It shows that the imaging of internal sub-millimeter defect is obtained using the LPA. The defect size and location are simultaneously calculated, with the relative error being 6.7% and 2.9%, respectively. The proposed longitudinal wave-based LPA is a promising method for the imaging and evaluation of internal micro defects.


2020 ◽  
Vol 10 (16) ◽  
pp. 5579
Author(s):  
Junkai Sun ◽  
Yang Wang ◽  
Cheng Huang ◽  
Wanhu Wang ◽  
Hongbing Wang ◽  
...  

Tsunamis induced by the landslide will divide into a traveling wave component propagating along the coastline and an offshore wave component propagating perpendicular to the coastline. The offshore tsunami wave has the non-negligible energy and destruction in enclosed basins as fjords, reservoirs, and lakes, which are worth studying. The initial submergence condition, the falling height and sliding angle of slider, are important reference indexes of damage degree of landslide and may also matter at that of the landslide-induced tsunami. Depending on the fully coupled model, the effects of them on the production and propagation of the tsunami were considered in the study. Since the slider used was semi-elliptic, the effect of the ratio of the long axis to the short axis was also analyzed. According to the computational fluid dynamics theory, a numerical wave tank was developed by the immersed boundary (IB) method; besides, the general moving-object module of slide mass was also embedded to the numerical tanker. The results indicate that the effects of the squeezing and pushing of the slider on water produce a naturally attenuated wave at the front of the wave train, and the attenuation becomes more serious with the increase in the initial submersion range of the slider. The effects of the vertical movement of the slider cause the increase in the amplitude of the back of the wave train. As the falling height increases, the large wave height increases when the slider is initially submerged and decreases when it is not initially submerged, except for the accidental elevation of that at smaller falling heights. The results also indicate that the hazard of the subaerial landslide-induced tsunami is greater under a small or large falling angle, and that of the partial subaerial and submarine landslide-induced tsunami is greater under a small falling angle. With the increase in the ratio of the long axis to the short axis, the total induced wave energy decreases and the shape of the wave train proportionally reduces, while the wave propagation mode does not change.


2020 ◽  
Vol 5 (3) ◽  
pp. 50
Author(s):  
Rustem Khasanov ◽  
Alexander Shengelaya ◽  
Roland Brütsch ◽  
Hugo Keller

The temperature dependencies of the in-plane (λab) and out-of-plane (λc) components of the magnetic field penetration depth were investigated near the surface and in the bulk of the electron-doped superconductor Sr0.9La0.1CuO2 by means of magnetization measurements. The measured λab(T) and λc(T) were analyzed in terms of a two-gap model with mixed s+d-wave symmetry of the order parameter. λab(T) is well described by an almost pure anisotropic d-wave symmetry component (≃96%), mainly reflecting the surface properties of the sample. In contrast, λc(T) exhibits a mixed s+d-wave order parameter with a substantial s-wave component of more than 50%. The comparison of λab−2(T) measured near the surface with that determined in the bulk by means of the muon-spin rotation/relaxation technique demonstrates that the suppression of the s-wave component of the order parameter near the surface is associated with a reduction of the superfluid density by more than a factor of two.


Sign in / Sign up

Export Citation Format

Share Document