scholarly journals Linear stability analysis of the homogeneous Couette flow in a 2D isentropic compressible fluid

Annals of PDE ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Paolo Antonelli ◽  
Michele Dolce ◽  
Pierangelo Marcati

AbstractIn this paper, we study the linear stability properties of perturbations around the homogeneous Couette flow for a 2D isentropic compressible fluid in the domain $$\mathbb {T}\times \mathbb {R}$$ T × R . In the inviscid case there is a generic Lyapunov type instability for the density and the irrotational component of the velocity field. More precisely, we prove that their $$L^2$$ L 2 norm grows as $$t^{1/2}$$ t 1 / 2 and this confirms previous observations in the physics literature. On the contrary, the solenoidal component of the velocity field experiences inviscid damping, namely it decays to zero even in the absence of viscosity. For a viscous compressible fluid, we show that the perturbations may have a transient growth of order $$\nu ^{-1/6}$$ ν - 1 / 6 (with $$\nu ^{-1}$$ ν - 1 being proportional to the Reynolds number) on a time-scale $$\nu ^{-1/3}$$ ν - 1 / 3 , after which it decays exponentially fast. This phenomenon is also called enhanced dissipation and our result appears to be the first to detect this mechanism for a compressible flow, where an exponential decay for the density is not a priori trivial given the absence of dissipation in the continuity equation.

2017 ◽  
Vol 29 (2) ◽  
pp. 024105 ◽  
Author(s):  
Bijaylakshmi Saikia ◽  
Ashwin Ramachandran ◽  
Krishnendu Sinha ◽  
Rama Govindarajan

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Li Li ◽  
Yanping Zhou

Abstract In this work, we consider the density-dependent incompressible inviscid Boussinesq equations in $\mathbb{R}^{N}\ (N\geq 2)$ R N ( N ≥ 2 ) . By using the basic energy method, we first give the a priori estimates of smooth solutions and then get a blow-up criterion. This shows that the maximum norm of the gradient velocity field controls the breakdown of smooth solutions of the density-dependent inviscid Boussinesq equations. Our result extends the known blow-up criteria.


1993 ◽  
Vol 5 (5) ◽  
pp. 1188-1200 ◽  
Author(s):  
Mohamed E. Ali ◽  
P. D. Weidman

1981 ◽  
Vol BME-28 (5) ◽  
pp. 416-420 ◽  
Author(s):  
H. Franken ◽  
J. Cement ◽  
M. Cauberghs ◽  
K. P. Van de Woestijne

1994 ◽  
Vol 258 ◽  
pp. 131-165 ◽  
Author(s):  
Peter W. Duck ◽  
Gordon Erlebacher ◽  
M. Yousuff Hussaini

The linear stability of compressible plane Couette flow is investigated. The appropriate basic velocity and temperature distributions are perturbed by a small-amplitude normal-mode disturbance. The full small-amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instabilities can occur, although the corresponding growth rates are often quite small; the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wave speed of the disturbances approaches the velocity of either of the walls, and these regimes are also analysed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.


1999 ◽  
Vol 149 (1) ◽  
pp. 69-96 ◽  
Author(s):  
Eduard Feireisl ◽  
Šàrka Matušû-Neĉa ◽  
Hana Petzeltová ◽  
Ivan Straškraba

2016 ◽  
Vol 5 (3/4) ◽  
pp. 172 ◽  
Author(s):  
Nan Chen ◽  
Fanglin Wang ◽  
Ruifeng Hu ◽  
Nepal C. Roy ◽  
Md. Anwar Hossain

1997 ◽  
Vol 40 (1) ◽  
Author(s):  
G. Böhm ◽  
G. Rossi ◽  
A. Vesnaver

3D reflection tomography allows the macro-model of complex geological structures to be reconstructed. In the usual approach, the spatial distribution of the velocity field is discretized by regular grids. This choice simplifies the development of the related software, but introduces two serious drawbacks: various domains of the model may be poorly covered, and a relevant mismatch between the grid and a complex velocity field may occur. So the tomographic inversion becomes unstable, unreliable and necessarily blurred. In this paper we introduce an algorithm to adapt the grid to the available ray paths and to the velocity field in sequence: so we get irregular grids with a locally variable resolution. We can guide the grid fitting procedure interactively, if we are going to introduce some geological a priori information; otherwise, we define a fully automatic approach, which exploits the Delauny triangles and Voronoi polygons.


Sign in / Sign up

Export Citation Format

Share Document