Optimal Subalgebra of GKP by Using Killing Form, Conservation Law and Some More Solutions

Author(s):  
Raj Kumar ◽  
Avneesh Kumar
2016 ◽  
Vol 57 ◽  
pp. 385
Author(s):  
Christopher Zoppou ◽  
Stephen Roberts ◽  
Jason Pitt
Keyword(s):  

2020 ◽  
Vol 61 (12) ◽  
pp. 122902
Author(s):  
Sajad Aghapour ◽  
Lars Andersson ◽  
Kjell Rosquist
Keyword(s):  

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Simone Göttlich ◽  
Jann Müller ◽  
Jennifer Weissen

Author(s):  
Qing-Ming Zhang ◽  
Y. H. Chen ◽  
F. L. Huang ◽  
Z. Z. Gong

AbstractFor describing the dynamic evolution of debris cloud formed in oblique hypervelocity impact, a model (expressed in polar coordinates) for the shape, the velocity distribution and the mass distribution is developed according to the results of experiments and numerical simulation, and parameters of the Model are identified by nonlinear integral equations which are derived from mass conservation law and energy conservation law. Afterwards, the model has been verified by another simulation code.


Sign in / Sign up

Export Citation Format

Share Document