one health
Recently Published Documents





2022 ◽  
Vol 65 ◽  
pp. 24-32
Brigitte Lamy ◽  
Sandrine Baron ◽  
Olivier Barraud

2022 ◽  
Vol 4 (1) ◽  
Gloria Igihozo ◽  
Phaedra Henley ◽  
Arne Ruckert ◽  
Charles Karangwa ◽  
Richard Habimana ◽  

Abstract Background Over the past decade, 70% of new and re-emerging infectious disease outbreaks in East Africa have originated from the Congo Basin where Rwanda is located. To respond to these increasing risks of disastrous outbreaks, the government began integrating One Health (OH) into its infectious disease response systems in 2011 to strengthen its preparedness and contain outbreaks. The strong performance of Rwanda in responding to the on-going COVID-19 pandemic makes it an excellent example to understand how the structure and principles of OH were applied during this unprecedented situation. Methods A rapid environmental scan of published and grey literature was conducted between August and December 2020, to assess Rwanda’s OH structure and its response to the COVID-19 pandemic. In total, 132 documents including official government documents, published research, newspaper articles, and policies were analysed using thematic analysis. Results Rwanda’s OH structure consists of multidisciplinary teams from sectors responsible for human, animal, and environmental health. The country has developed OH strategic plans and policies outlining its response to zoonotic infections, integrated OH into university curricula to develop a OH workforce, developed multidisciplinary rapid response teams, and created decentralized laboratories in the animal and human health sectors to strengthen surveillance. To address COVID-19, the country created a preparedness and response plan before its onset, and a multisectoral joint task force was set up to coordinate the response to the pandemic. By leveraging its OH structure, Rwanda was able to rapidly implement a OH-informed response to COVID-19. Conclusion Rwanda’s integration of OH into its response systems to infectious diseases and to COVID-19 demonstrates the importance of applying OH principles into the governance of infectious diseases at all levels. Rwanda exemplifies how preparedness and response to outbreaks and pandemics can be strengthened through multisectoral collaboration mechanisms. We do expect limitations in our findings due to the rapid nature of our environmental scan meant to inform the COVID-19 policy response and would encourage a full situational analysis of OH in Rwanda’s Coronavirus response.

2022 ◽  
Vol 22 (1) ◽  
Matrujyoti Pattnaik ◽  
Jaya Singh Kshatri ◽  
Hari Ram Choudhary ◽  
Debaprasad Parai ◽  
Jyoti Shandilya ◽  

Abstract Background This study is a baseline survey to assess the knowledge, attitude and practices with regards to the anthrax disease among the communities before demonstrating a One Health approach for elimination of human anthrax in an endemic district of Odisha. A total of 2670 respondents from 112 villages of 14 blocks were interviewed for the study using a structured questionnaire by multi-stage sampling method. Descriptive statistics were reported and logistic regression was performed to estimate the relationship between the variables and knowledge of anthrax. Result Out of 2670 participants in the study, 76.25% were male and about half were illiterate. Most of the respondents (54.19%) were involved in agriculture as an occupation. 71% of the respondents had livestock in their houses and farming was the main purpose for keeping the livestock. Only one-fifth of the respondents (20.26%) knew about anthrax and a majority of them have come across the disease during community outbreaks. Almost 25.9% of livestock owners had knowledge about vaccination against anthrax disease although 83.4% of the livestock owners disposed the animal carcass by burial method. Conclusion The study findings indicated that the community members had poor knowledge of cause, symptoms, transmission and prevention of anthrax disease which may be improved by a One Health approach.

Walter Leal Filho ◽  
Linda Ternova ◽  
Sanika Arun Parasnis ◽  
Marina Kovaleva ◽  
Gustavo J. Nagy

Climate change can have a complex impact that also influences human and animal health. For example, climate change alters the conditions for pathogens and vectors of zoonotic diseases. Signs of this are the increasing spread of the West Nile and Usutu viruses and the establishment of new vector species, such as specific mosquito and tick species, in Europe and other parts of the world. With these changes come new challenges for maintaining human and animal health. This paper reports on an analysis of the literature focused on a bibliometric analysis of the Scopus database and VOSviewer software for creating visualization maps which identifies the zoonotic health risks for humans and animals caused by climate change. The sources retained for the analysis totaled 428 and different thresholds (N) were established for each item varying from N 5 to 10. The main findings are as follows: First, published documents increased in 2009–2015 peaking in 2020. Second, the primary sources have changed since 2018, partly attributable to the increase in human health concerns due to human-to-human transmission. Third, the USA, the UK, Canada, Australia, Italy, and Germany perform most zoonosis research. For instance, sixty documents and only 17 countries analyzed for co-authorship analysis met the threshold led by the USA; the top four author keywords were “climate change”, “zoonosis”, “epidemiology”, and “one health;” the USA, the UK, Germany, and Spain led the link strength (inter-collaboration); the author keywords showed that 37 out of the 1023 keywords met the threshold, and the authors’ keyword’s largest node of the bibliometric map contains the following: infectious diseases, emerging diseases, disease ecology, one health, surveillance, transmission, and wildlife. Finally, zoonotic diseases, which were documented in the literature in the past, have evolved, especially during the years 2010–2015, as evidenced by the sharp augmentation of publications addressing ad-hoc events and peaking in 2020 with the COVID-19 outbreak.

2022 ◽  
Vol 23 (2) ◽  
pp. 918
Bruna Lopes ◽  
Patrícia Sousa ◽  
Rui Alvites ◽  
Mariana Branquinho ◽  
Ana Catarina Sousa ◽  

Peripheral nerve injuries (PNI) can have several etiologies, such as trauma and iatrogenic interventions, that can lead to the loss of structure and/or function impairment. These changes can cause partial or complete loss of motor and sensory functions, physical disability, and neuropathic pain, which in turn can affect the quality of life. This review aims to revisit the concepts associated with the PNI and the anatomy of the peripheral nerve is detailed to explain the different types of injury. Then, some of the available therapeutic strategies are explained, including surgical methods, pharmacological therapies, and the use of cell-based therapies alone or in combination with biomaterials in the form of tube guides. Nevertheless, even with the various available treatments, it is difficult to achieve a perfect outcome with complete functional recovery. This review aims to enhance the importance of new therapies, especially in severe lesions, to overcome limitations and achieve better outcomes. The urge for new approaches and the understanding of the different methods to evaluate nerve regeneration is fundamental from a One Health perspective. In vitro models followed by in vivo models are very important to be able to translate the achievements to human medicine.

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 90
Avi Patel ◽  
Meg Jenkins ◽  
Kelly Rhoden ◽  
Amber N. Barnes

Filth flies, cockroaches, and dung beetles have been close neighbors with humans and animals throughout our joint histories. However, these insects can also serve as vectors for many zoonotic enteric parasites (ZEPs). Zoonoses by ZEPs remain a paramount public health threat due to our close contact with animals, combined with poor water, sanitation, and hygiene access, services, and behaviors in many global regions. Our objective in this systematic review was to determine which ZEPs have been documented in these vectors, to identify risk factors associated with their transmission, and to provide effectual One Health recommendations for curbing their spread. Using PRISMA guidelines, a total of 85 articles published from 1926 to 2021 were reviewed and included in this study. Qualitative analysis revealed that the most common parasites associated with these insects included, but were not limited to: Ascaris spp., Trichuris spp., Entamoeba spp., and Cryptosporidium spp. Additionally, prominent risk factors discovered in the review, such as poor household and community WASH services, unsafe food handling, and exposure to domestic animals and wildlife, significantly increase parasitic transmission and zoonoses. The risk of insect vector transmission in our shared environments makes it critically important to implement a One Health approach in reducing ZEP transmission.

Chung-Ming Chang ◽  
Ramendra Pati Pandey ◽  
Riya Mukherjee

Antimicrobial resistance (AMR) is an increasing hazard to human and animal health that necessitates an international response. Surveillance methods in high-income nations aided in the development of measures to combat AMR in animals. Demand for meat is increasing in countries making it critical to implement anti-AMR initiatives. Surveillance of AMR, on the other hand, is at best in its infancy, and the current evidence base for informing policymakers is geographically disparate. All of the isolates had high rates of AMR to medicines that are critical/highly important in human and animal medicine. A higher incidence of AMR was found in poultry farms. Our findings show that AMR, including MDR, is common in coli, Salmonella spp., commonly found in poultry. The study promotes the development of national policies, programs, and additional research based on a "One Health" approach that helps humans and animals, as well as the environment.

2022 ◽  
Julianne Meisner ◽  
Agapitus Kato ◽  
Marshall Lemerani ◽  
Erick Mwamba Miaka ◽  
Acaga Ismail Taban ◽  

Abstract Background: In response to large strides in the control of human African trypanosomiasis (HAT), in the early 2000s the WHO set targets for elimination of both the gambiense (gHAT) and rhodesiense (rHAT) forms as a public health (EPHP) problem by 2020, and elimination of gHAT transmisson (EOT) by 2030. While global EPHP targets have been met, and EOT appears within reach, there is ample evidence that current control strategies will not achieve gHAT EOT in the presence of animal reservoirs, the role of which is currently uncertain. Furthermore, rHAT is not targeted for EOT due to the known importance of animal reservoirs for this form. Methods: To evaluate the utility of a One Health approach to gHAT and rHAT EOT, we built and parameterized a compartmental stochastic model, using the Institute for Disease Modeling's Compartmental Modeling Software, to six HAT epidemics: the national rHAT epidemics in Uganda and Malawi, the national gHAT epidemics in Uganda and South Sudan, and two separate gHAT epidemics in Democratic Republic of Congo distinguished by dominant vector species. In rHAT foci the reservoir animal sub-model was stratified on four species groups, while in gHAT foci domestic swine were assumed to be the only competent reservoir. The modeled time horizon was 2005-2045, with calibration performed using HAT surveillance data from 2000-2004 and Optuna. Interventions included insecticide and trypanocide treatment of domestic animal reservoirs at varying coverage levels. Results: Validation against HAT surveillance data indicates favorable performance overall, with the possible exception of DRC. EOT was not observed in any modeled scenarios for rHAT, however insecticide treatment consistently performed better than trypanocide treatment in terms of rHAT control. EOT was not observed for gHAT at 0% coverage of domestic reservoirs with trypanocides or insecticides, but was observed by 2030 in all test scenarios; again, insecticides demonstrated superior performance to trypanocides. Conclusions: EOT cannot be achieved for rHAT without control of wildlife reservoirs, however insecticide treatment of domestic animals holds promise for improved control. In the presence of domestic animal reservoirs, gHAT EOT will not be achieved under current control strategies.

2022 ◽  
Vol 50 (1) ◽  
Yogendra Shah ◽  
Sarad Paudel ◽  
Kishor Pandey ◽  
Govind Prasad Gupta ◽  
Eddie Samuneti Solo ◽  

AbstractTuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis complex (MTBC) in humans and animals. Numbers of multi drug resistance TB (MDR-TB), extrapulmonary TB (EPTB) and zoonotic TB cases are increasingly being reported every year in Nepal posing a major public health problem. Therefore, the Government of Nepal should act immediately to strengthen the screening facilities across the country to be able to identify and treat the TB infected patients as well as detect zoonotic TB in animal species. Endorsement of One Health Act by the Government of Nepal is an opportunity to initiate the joint programs for TB surveillance among human and animal species using one health approach to reduce the TB burden in Nepal.

Sign in / Sign up

Export Citation Format

Share Document