killing form
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Viviana del Barco ◽  
Andrei Moroianu

Abstract We study left-invariant conformal Killing 2- or 3-forms on simply connected 2-step nilpotent Riemannian Lie groups. We show that if the center of the group is of dimension greater than or equal to 4, then every such form is automatically coclosed (i.e. it is a Killing form). In addition, we prove that the only Riemannian 2-step nilpotent Lie groups with center of dimension at most 3 and admitting left-invariant non-coclosed conformal Killing 2- and 3-forms are the following: The Heisenberg Lie groups and their trivial 1-dimensional extensions, endowed with any left-invariant metric, and the simply connected Lie group corresponding to the free 2-step nilpotent Lie algebra on 3 generators, with a particular 1-parameter family of metrics. The explicit description of the space of conformal Killing 2- and 3-forms is provided in each case.


2021 ◽  
Vol 9 (1) ◽  
pp. 119-148
Author(s):  
Thomas Ernst

Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples S U q ( 1 , 1 ) S O q ( 2 ) {{S{U_q}\left( {1,1} \right)} \over {S{O_q}\left( 2 \right)}} and S O q ( 3 ) S O q ( 2 ) {{S{O_q}\left( 3 \right)} \over {S{O_q}\left( 2 \right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).


2021 ◽  
Vol 7 (1) ◽  
pp. 43-49
Author(s):  
Anoh Yannick Kraidi ◽  
Kinvi Kangni

AbstractLet 𝔤 be a semisimple Lie algebra, j a Cartan subalgebra of 𝔤, j*, the dual of j, jv the bidual of j and B(., .) the restriction to j of the Killing form of 𝔤. In this work, we will construct a chain of reproducing kernel Cartan subalgebras ordered by inclusion.


Author(s):  
Zaili Yan ◽  
Shaoqiang Deng

A quadruple of Lie groups [Formula: see text], where [Formula: see text] is a compact semisimple Lie group, [Formula: see text] are closed subgroups of [Formula: see text], and the related Casimir constants satisfy certain appropriate conditions, is called a basic quadruple. A basic quadruple is called Einstein if the Killing form metrics on the coset spaces [Formula: see text], [Formula: see text] and [Formula: see text] are all Einstein. In this paper, we first give a complete classification of the Einstein basic quadruples. We then show that, except for very few exceptions, given any quadruple [Formula: see text] in our list, we can produce new non-naturally reductive Einstein metrics on the coset space [Formula: see text], by scaling the Killing form metrics along the complement of [Formula: see text] in [Formula: see text] and along the complement of [Formula: see text] in [Formula: see text]. We also show that on some compact semisimple Lie groups, there exist a large number of left invariant non-naturally reductive Einstein metrics which are not product metrics. This discloses a new interesting phenomenon which has not been described in the literature.


Author(s):  
J. E. Rosales-Quintero

We study an [Formula: see text] pure connection formulation in four dimensions for real-valued fields, inspired by the Capovilla, Dell and Jacobson complex self-dual approach. By considering the CMPR BF action, also, taking into account a more general class of the Cartan–Killing form for the Lie algebra [Formula: see text] and by refining the structure of the Lagrange multipliers, we integrate out the metric variables in order to obtain the pure connection action. Once we have obtained this action, we impose certain restrictions on the Lagrange multipliers, in such a way that the equations of motion led us to a family of torsionless conformally flat Einstein manifolds, parametrized by two numbers. Finally, we show that, by a suitable choice of parameters, self-dual spaces (Anti-) de Sitter can be obtained.


Author(s):  
S. E. Stepanov ◽  
I. I. Tsyganok

Conformal Killing form is a natural generalization of con­formal Killing vector field. These forms were exten­si­vely studied by many geometricians. These considerations we­re motivated by existence of various applications for the­se forms. The vector space of conformal Killing p-forms on an n-dimensional closed Riemannian mani­fold M has a finite dimension na­med the Tachibana number. These numbers are conformal scalar invariant of M and satisfy the duality theorem: . In the present article we prove two vanishing theorems. According to the first theorem, there are no nonzero Tachi­bana numbers on an n-dimensional closed Rie­mannian manifold with pinched negative sectional curva­ture such that for some pinching con­stant . From the second theorem we conc­lude that there are no nonzero Tachibana numbers on a three-dimensional closed Riemannian manifold with ne­gative sectional curvature.


2019 ◽  
Vol 22 (08) ◽  
pp. 1950076
Author(s):  
Vincent Knibbeler ◽  
Sara Lombardo ◽  
Jan A. Sanders

We show that automorphic Lie algebras which contain a Cartan subalgebra with a constant-spectrum, called hereditary, are completely described by 2-cocycles on a classical root system taking only two different values. This observation suggests a novel approach to their classification. By determining the values of the cocycles on opposite roots, we obtain the Killing form and the abelianization of the automorphic Lie algebra. The results are obtained by studying equivariant vectors on the projective line. As a byproduct, we describe a method to reduce the computation of the infinite-dimensional space of said equivariant vectors to a finite-dimensional linear computation and the determination of the ring of automorphic functions on the projective line.


Sign in / Sign up

Export Citation Format

Share Document