Numerical Modelling of Stone Column Installation Effects on Performance of Circular Footing

Author(s):  
Sadok Benmebarek ◽  
Abdeldjalil Remadna ◽  
Naima Benmebarek
2014 ◽  
Vol 4 (1) ◽  
pp. 29-36
Author(s):  
Chokhawala H. N ◽  
◽  
Desai. D. J ◽  
Rudani S. V. ◽  
Shah R. D ◽  
...  

2012 ◽  
Vol 7 (3) ◽  
pp. 219-237 ◽  
Author(s):  
Riccardo Conti ◽  
Luca de Sanctis ◽  
Giulia M. B. Viggiani

Author(s):  
J.S. Yadav ◽  
K. Kumar ◽  
R.K. Dutta ◽  
A. Garg

Purpose: This study aims to study the load – settlement behaviour of circular footing rested on encased single stone column. Design/methodology/approach: The effect of vertical, horizontal and combined verticalhorizontal encasement of stone column on the load carrying capacity were examined numerically. The effect of stone column dimension (80 mm and 100 mm), length (400 mm and 500 mm), and spacing of reinforcement on the load carrying capacity and reinforcement ratio were assessed. Findings: The obtained results revealed that the load carrying capacity of geotextile encased stone columns are more than ordinary stone columns. For vertically encased stone columns as the diameter increases, the advantage of encasement decreases. Whereas, for horizontally encased stone column and combined vertical- horizontal encased stone column, the performance of encasement intensifies as the diameter of stone column increases. The improvement in the load carrying capacity of clay bed reinforced with combined verticalhorizontal encased stone columns are higher than vertical encased stone columns or horizontal encased stone column. The maximum performance of encasement was observed for VHESC1 of D = 80 mm. Research limitations/implications: For this study, the diameter of footing and stone column was kept same. The interface strength factor between stone column and clay bed was not considered. Practical implications: The encased stone column could be use improve the laod bearing capacity of weak soils. Originality/value: Many studies are available in literature regarding use of geosynthetic as vertical encasement and horizontal encasement of stone column. The study on combined effect of vertical and horizontal encasement of stone column on load carrying capacity of weak soil is very minimal. Keeping this in view, the present work was carried out.


2018 ◽  
Vol 24 (5) ◽  
pp. 86
Author(s):  
Omar Khaleel Ismael Al-Kubaisi

Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite element models have been conducted to evaluate the behavior of a circular footing with different stone column configurations. Moreover, an Artificial Neural Network (ANN) model has been generated for predicting these effects. The results showed a reduction in the bending moment, the settlement, and the vertical stresses with the increment of the stone column length, while both the horizontal stress and the shear force were increased. ANN model showed a good relationship between the predicted and the calculated results.  


Sign in / Sign up

Export Citation Format

Share Document