scholarly journals Quantum mock modular forms arising from eta–theta functions

2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Amanda Folsom ◽  
Sharon Garthwaite ◽  
Soon-Yi Kang ◽  
Holly Swisher ◽  
Stephanie Treneer
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2012 ◽  
Vol 29 (1-3) ◽  
pp. 295-310 ◽  
Author(s):  
Kathrin Bringmann ◽  
Amanda Folsom ◽  
Robert C. Rhoades

Author(s):  
Amanda Folsom

This article is in commemoration of Ramanujan's election as Fellow of The Royal Society 100 years ago, as celebrated at the October 2018 scientific meeting at the Royal Society in London. Ramanujan's last letter to Hardy, written shortly after his election, surrounds his mock theta functions. While these functions have been of great importance and interest in the decades following Ramanujan's death in 1920, it was unclear how exactly they fit into the theory of modular forms—Dyson called this ‘a challenge for the future’ at another centenary conference in Illinois in 1987, honouring the 100th anniversary of Ramanujan's birth. In the early 2000s, Zwegers finally recognized that Ramanujan had discovered glimpses of special families of non-holomorphic modular forms, which we now know to be Bruinier and Funke's harmonic Maass forms from 2004, the holomorphic parts of which are called mock modular forms. As of a few years ago, a fundamental question from Ramanujan's last letter remained, on a certain asymptotic relationship between mock theta functions and ordinary modular forms. The author, with Ono and Rhoades, revisited Ramanujan's asymptotic claim, and established a connection between mock theta functions and quantum modular forms, which were not defined until 90 years later in 2010 by Zagier. Here, we bring together past and present, and study the relationships between mock modular forms and quantum modular forms, with Ramanujan's mock theta functions as motivation. In particular, we highlight recent work of Bringmann–Rolen, Choi–Lim–Rhoades and Griffin–Ono–Rolen in our discussion. This article is largely expository, but not exclusively: we also establish a new interpretation of Ramanujan's radial asymptotic limits in the subject of topology. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.


Author(s):  
Miranda C. N. Cheng ◽  
Francesca Ferrari ◽  
Gabriele Sgroi

Mock modular forms have found applications in numerous branches of mathematical sciences since they were first introduced by Ramanujan nearly a century ago. In this proceeding, we highlight a new area where mock modular forms start to play an important role, namely the study of three-manifold invariants. For a certain class of Seifert three-manifolds, we describe a conjecture on the mock modular properties of a recently proposed quantum invariant. As an illustration, we include concrete computations for a specific three-manifold, the Brieskorn sphere Σ (2, 3, 7). This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.


2015 ◽  
Vol 2 (11) ◽  
pp. 150310 ◽  
Author(s):  
Kathrin Bringmann ◽  
Larry Rolen ◽  
Sander Zwegers

In this paper, we study modularity of several functions which naturally arose in a recent paper of Lau and Zhou on open Gromov–Witten potentials of elliptic orbifolds. They derived a number of examples of indefinite theta functions, and we provide modular completions for several such functions which involve more complicated objects than ordinary modular forms. In particular, we give new closed formulae for special indefinite theta functions of type (1,2) in terms of products of mock modular forms. This formula is also of independent interest.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Kathrin Bringmann ◽  
Jonas Kaszian ◽  
Antun Milas ◽  
Caner Nazaroglu

AbstractFalse theta functions form a family of functions with intriguing modular properties and connections to mock modular forms. In this paper, we take the first step towards investigating modular transformations of higher rank false theta functions, following the example of higher depth mock modular forms. In particular, we prove that under quite general conditions, a rank two false theta function is determined in terms of iterated, holomorphic, Eichler-type integrals. This provides a new method for examining their modular properties and we apply it in a variety of situations where rank two false theta functions arise. We first consider generic parafermion characters of vertex algebras of type $$A_2$$ A 2 and $$B_2$$ B 2 . This requires a fairly non-trivial analysis of Fourier coefficients of meromorphic Jacobi forms of negative index, which is of independent interest. Then we discuss modularity of rank two false theta functions coming from superconformal Schur indices. Lastly, we analyze $${\hat{Z}}$$ Z ^ -invariants of Gukov, Pei, Putrov, and Vafa for certain plumbing $$\mathtt{H}$$ H -graphs. Along the way, our method clarifies previous results on depth two quantum modularity.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Georgios Korpas ◽  
Jan Manschot ◽  
Gregory W. Moore ◽  
Iurii Nidaiev

AbstractThe u-plane integral is the contribution of the Coulomb branch to correlation functions of $${\mathcal {N}}=2$$ N = 2 gauge theory on a compact four-manifold. We consider the u-plane integral for correlators of point and surface observables of topologically twisted theories with gauge group $$\mathrm{SU}(2)$$ SU ( 2 ) , for an arbitrary four-manifold with $$(b_1,b_2^+)=(0,1)$$ ( b 1 , b 2 + ) = ( 0 , 1 ) . The u-plane contribution equals the full correlator in the absence of Seiberg–Witten contributions at strong coupling, and coincides with the mathematically defined Donaldson invariants in such cases. We demonstrate that the u-plane correlators are efficiently determined using mock modular forms for point observables, and Appell–Lerch sums for surface observables. We use these results to discuss the asymptotic behavior of correlators as function of the number of observables. Our findings suggest that the vev of exponentiated point and surface observables is an entire function of the fugacities.


Sign in / Sign up

Export Citation Format

Share Document