scholarly journals On the cohomology of the space of seven points in general linear position

2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Olof Bergvall

AbstractWe determine the cohomology groups of the space of seven points in general linear position in the projective plane as representations of the symmetric group on seven elements by making equivariant point counts over finite fields. We also comment on the case of eight points.

10.37236/2929 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Jürgen Bierbrauer ◽  
Klaus Metsch

Consider the symmetric group $S_n$ with the Hamming metric. A  permutation code on $n$ symbols is a subset $C\subseteq S_n.$ If $C$ has minimum distance $\geq n-1,$ then $\vert C\vert\leq n^2-n.$ Equality can be reached if and only if a projective plane of order $n$ exists. Call $C$ embeddable if it is contained in a permutation code of minimum distance $n-1$ and cardinality $n^2-n.$ Let $\delta =\delta (C)=n^2-n-\vert C\vert$ be the deficiency of the permutation code $C\subseteq S_n$ of minimum distance $\geq n-1.$We prove that $C$ is embeddable if either $\delta\leq 2$ or if $(\delta^2-1)(\delta +1)^2<27(n+2)/16.$ The main part of the proof is an adaptation of the method used to obtain the famous Bruck completion theorem for mutually orthogonal latin squares.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


2020 ◽  
Vol 208 (1) ◽  
pp. 31-48
Author(s):  
Thomas Wennink

AbstractThe trigonal curves of genus 5 can be represented by projective plane quintics that have one singularity of delta invariant one. Combining this with a partial sieve method for plane curves we count the number of such curves over any finite field. The main application is that this gives the motivic Euler characteristic of the moduli space of trigonal curves of genus 5.


1999 ◽  
Vol 150 (2) ◽  
pp. 663 ◽  
Author(s):  
Vincent Franjou ◽  
Eric M. Friedlander ◽  
Alexander Scorichenko ◽  
Andrei Suslin
Keyword(s):  

1970 ◽  
Vol 11 (3) ◽  
pp. 257-259 ◽  
Author(s):  
J. T. Goozeff

A. J. Weir [1] has found the maximal normal abelian subgroups of the Sylow p-subgroups of the general linear group over a finite field of characteristic p, and a theorem of J. L. Alperin [2] shows that the Sylow p-subgroups of the general linear group over finite fields of characteristic different from p have a unique largest normal abelian subgroup and that no other abelian subgroup has order as great.


2001 ◽  
Vol 64 (1) ◽  
pp. 121-129
Author(s):  
Andrew J. Spencer

For some of the classical groups over finite fields it is possible to express the proportion of eigenvalue-free matrices in terms of generating functions. We prove a theorem on the monotonicity of the coefficients of powers of power series and apply this to the generating functions of the general linear, symplectic and orthogonal groups. This proves a conjecture on the monotonicity of the proportions of eigenvalue-free elements in these groups.


Sign in / Sign up

Export Citation Format

Share Document