permutation code
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

10.37236/5852 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Marzieh Akbari ◽  
Neil I. Gillespie ◽  
Cheryl E. Praeger

Twisted permutation codes, introduced recently by the second and third authors, belong to the family of frequency permutation arrays. Like some other codes in this family, such as the repetition permutation codes, they are obtained by a repetition construction applied to a smaller code (but with a "twist" allowed). The minimum distance of a twisted permutation code is known to be at least the minimum distance of a corresponding repetition permutation code, but in some instances can be larger. We construct two new infinite families of twisted permutation codes with minimum distances strictly greater than those for the corresponding repetition permutation codes. These constructions are based on two infinite families of finite groups and their representations. The first is a family of $p$-groups, for an odd prime $p$, while the second family consists of the $4$-dimensional symplectic groups over a finite field of even order. In the latter construction, properties of the graph automorphism of these symplectic groups play an important role.


2017 ◽  
Vol 224 ◽  
pp. 9-15 ◽  
Author(s):  
Jean-Luc Baril ◽  
Vincent Vajnovszki
Keyword(s):  

10.37236/2929 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Jürgen Bierbrauer ◽  
Klaus Metsch

Consider the symmetric group $S_n$ with the Hamming metric. A  permutation code on $n$ symbols is a subset $C\subseteq S_n.$ If $C$ has minimum distance $\geq n-1,$ then $\vert C\vert\leq n^2-n.$ Equality can be reached if and only if a projective plane of order $n$ exists. Call $C$ embeddable if it is contained in a permutation code of minimum distance $n-1$ and cardinality $n^2-n.$ Let $\delta =\delta (C)=n^2-n-\vert C\vert$ be the deficiency of the permutation code $C\subseteq S_n$ of minimum distance $\geq n-1.$We prove that $C$ is embeddable if either $\delta\leq 2$ or if $(\delta^2-1)(\delta +1)^2<27(n+2)/16.$ The main part of the proof is an adaptation of the method used to obtain the famous Bruck completion theorem for mutually orthogonal latin squares.


Sign in / Sign up

Export Citation Format

Share Document