Numerical Solution of Fractional Optimal Control Problems with Inequality Constraint Using the Fractional-Order Bernoulli Wavelet Functions

Author(s):  
Forugh Valian ◽  
Yadollah Ordokhani ◽  
Mohammad Ali Vali
2019 ◽  
Vol 25 (15) ◽  
pp. 2143-2150 ◽  
Author(s):  
M Abdelhakem ◽  
H Moussa ◽  
D Baleanu ◽  
M El-Kady

Two schemes to find approximated solutions of optimal control problems of fractional order (FOCPs) are investigated. Integration and differentiation matrices were used in these schemes. These schemes used Chebyshev polynomials in the shifted case as a functional approximation. The target of the presented schemes is to convert such problems to optimization problems (OPs). Numerical examples are included, showing the strength of the schemes.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nasser Hassan Sweilam ◽  
Tamer Mostafa Al-Ajami ◽  
Ronald H. W. Hoppe

We present two different approaches for the numerical solution of fractional optimal control problems (FOCPs) based on a spectral method using Chebyshev polynomials. The fractional derivative is described in the Caputo sense. The first approach follows the paradigm “optimize first, then discretize” and relies on the approximation of the necessary optimality conditions in terms of the associated Hamiltonian. In the second approach, the state equation is discretized first using the Clenshaw and Curtis scheme for the numerical integration of nonsingular functions followed by the Rayleigh-Ritz method to evaluate both the state and control variables. Two illustrative examples are included to demonstrate the validity and applicability of the suggested approaches.


2017 ◽  
Vol 24 (15) ◽  
pp. 3370-3383 ◽  
Author(s):  
Kobra Rabiei ◽  
Yadollah Ordokhani ◽  
Esmaeil Babolian

In this paper, a new set of functions called fractional-order Boubaker functions is defined for solving the delay fractional optimal control problems with a quadratic performance index. To solve the problem, first we obtain the operational matrix of the Caputo fractional derivative of these functions and the operational matrix of multiplication to solve the nonlinear problems for the first time. Also, a general formulation for the delay operational matrix of these functions has been achieved. Then we utilized these matrices to solve delay fractional optimal control problems directly. In fact, the delay fractional optimal control problem converts to an optimization problem, which can then be easily solved with the aid of the Gauss–Legendre integration formula and Newton’s iterative method. Convergence of the algorithm is proved. The applicability of the method is shown by some examples; moreover, a comparison with the existing results shows the preference of this method.


Sign in / Sign up

Export Citation Format

Share Document