functional approximation
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sebastian Sitkiewicz ◽  
Eloy Ramos-Cordoba ◽  
Josep M. Luis ◽  
Eduard Matito

<div> <div> <div> <p>Electrides are very peculiar ionic compounds where electrons occupy the anionic positions. In a crystal lattice, these isolated electrons often group forming channels or surfaces, furnishing electrides with a plethora of traits with promising technological applications. Despite their huge potential, thus far, only a few stable electrides have been produced because of the intricate synthesis they entail. Due to the difficulty in assessing the presence of isolated electrons, the characterization of electrides also poses some serious challenges. In fact, their properties are expected to depend on the arrangement of these electrons in the molecule. Among the criteria that we can use to characterize electrides, the presence of a non-nuclear attractor (NNA) of the electron density is both the rarest and the most salient feature. Therefore, a correct description of the NNA is crucial to determine the properties of electrides. In this paper, we analyze the NNA and the surrounding region of nine molecular electrides with the goal of determining the number of isolated electrons that are held in the electride. We have seen that the correct description of a molecular electride hinges on the electronic structure method employed for the analyses. In particular, one should employ a basis set with sufficient flexibility to describe the region close to the NNA and a density functional approximation that does not suffer from large delocalization errors. Finally, we have classified these nine molecular electrides according to the most likely number of electrons that we can find in the NNA. We believe this classification highlights the strength of the electride character and will prove useful in the design of new electrides.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Sebastian Sitkiewicz ◽  
Eloy Ramos-Cordoba ◽  
Josep M. Luis ◽  
Eduard Matito

<div> <div> <div> <p>Electrides are very peculiar ionic compounds where electrons occupy the anionic positions. In a crystal lattice, these isolated electrons often group forming channels or surfaces, furnishing electrides with a plethora of traits with promising technological applications. Despite their huge potential, thus far, only a few stable electrides have been produced because of the intricate synthesis they entail. Due to the difficulty in assessing the presence of isolated electrons, the characterization of electrides also poses some serious challenges. In fact, their properties are expected to depend on the arrangement of these electrons in the molecule. Among the criteria that we can use to characterize electrides, the presence of a non-nuclear attractor (NNA) of the electron density is both the rarest and the most salient feature. Therefore, a correct description of the NNA is crucial to determine the properties of electrides. In this paper, we analyze the NNA and the surrounding region of nine molecular electrides with the goal of determining the number of isolated electrons that are held in the electride. We have seen that the correct description of a molecular electride hinges on the electronic structure method employed for the analyses. In particular, one should employ a basis set with sufficient flexibility to describe the region close to the NNA and a density functional approximation that does not suffer from large delocalization errors. Finally, we have classified these nine molecular electrides according to the most likely number of electrons that we can find in the NNA. We believe this classification highlights the strength of the electride character and will prove useful in the design of new electrides.</p> </div> </div> </div>


2021 ◽  
Vol 22 (1) ◽  
pp. 16-23
Author(s):  
Teshome Gerbaba Edossa ◽  
Menberu Woldemariam

Zinc blend (zb) and wurtizite (wz) structure of cadmium selenide (CdSe) is determined using density-functional theory within local density approximation (LDA), generalized gradient approximation (GGA), Hubbard-correction (GGA+U) and Hybrid functional approximation (PBE0 or HSE06). The first principle pseudopotential plane wave is used and the relaxed atomic position for the CdSe in zb and wz structure was obtained by using total energy and force minimization method following the Hellmann Feynman approach. The convergence test of total energy with respect to cutoff energy and k-point sampling is performed . The equilibrium lattice constant and unit cell volume of CdSe in both phases are calculated and the obtained value is compared` with experimental values. In addition the band gap of CdSe is analyzed using DFT within LDA, GGA, DFT+U and PBE0 to approximate the unknown exchange correlation functional. The band gap values obtained using LDA and GGA are severally under estimated due to their poor approximation of exchange-correlation potential. This problem was improved by using projector augmented-wave pseudopotential within Hubbard-correction (GGA+U) and the hybrid functional approximation. Optical properties: complex and real parts of dielectric function, energy loss spectrum and absorption coefficient of CdSe in both ZB and WZ phase were studied.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Teshome Gerbaba Edossa ◽  
Menberu Mengasha Woldemariam

Zinc blende (zb) and wurtzite (wz) structure of cadmium sulfide (CdS) are analyzed using density functional theory within local density approximation (LDA), generalized gradient approximation (GGA), Hubbard correction (GGA + U), and hybrid functional approximation (PBE0 or HSE06). To assure the accuracy of calculation, the convergence test of total energy with respect to energy cutoff and k-point sampling is performed. The relaxed atomic position for the CdS in zb and wz structure is obtained by using total energy and force minimization method following the Hellmann–Feynman approach. The structural optimization and electronic band structure properties of CdS are investigated. Analysis of the results shows that LDA and GGA underestimate the bandgap due to their poor approximation of exchange-correlation functional. However, the Hubbard correction to GGA and the hybrid functional approximation give a good bandgap value which is comparable to the experimental result. Moreover, the optical properties such as real and imaginary parts of the dielectric function, the absorption coefficient, and the energy loss function of CdS are determined.


Sign in / Sign up

Export Citation Format

Share Document