The Applicability of Different Earthquake Intensity Measures to the Seismic Vulnerability of a High-Speed Railway Continuous Bridge

2018 ◽  
Vol 17 (7) ◽  
pp. 981-997 ◽  
Author(s):  
Biao Wei ◽  
Chaobin Li ◽  
Xuhui He
2020 ◽  
Vol 16 (1) ◽  
pp. 39-48
Author(s):  
Parham Bakhtiari ◽  
Khosro Bargi

AbstractThe assessment of the seismic behavior of the high-speed railway bridges is necessary because of the strategic essence of these structures. Evaluating and predicting damages of the bridges that originated by earthquakes with various intensities can provide useful information, which is very helpful in the management of the possible crises. One of the most useful mechanisms for estimating earthquake damages to these bridges is the development of fragility curves for them. Studies on the production of fragility curves on the high-speed railway bridges are limited. In this research, the fragility curve is plotted for two high-speed railway bridges with different pier heights. Due to the differences in the height of these bridges, a comparison of the performance of these structures is also shown. The model of the high-speed railway bridge was created for each model separately in the SeismoStruct software. The soil-structure interaction is also modeled as springs, and its effects are considered. Nonlinear models are also used to model concrete and steel materials. Then, the incremental dynamic analysis was performed under different ground motion records. By using the obtained data from the analysis, appropriate damage states were selected, and finally, the fragility curves were plotted for different performance limit states. The results showed that with increasing pier height, the damage index was raised and for a constant probability of exceedance, the taller pier is demanded a lower spectral acceleration to achieve a performance level.


2011 ◽  
Vol 243-249 ◽  
pp. 3844-3847 ◽  
Author(s):  
Ling Kun Chen ◽  
Li Zhong Jiang ◽  
Zhi Ping Zeng ◽  
Bo Fu Luo

The responses of high-speed railway bridge subjected to seismic load were investigated by numerical simulation, the whole finite element model of the multi-span bridge simply supported bridge was set up, and natural vibration properties of structure were analyzed. According to theory of elasticity and elastic-plasticity, parametric study was conducted to assess the influences of different speeds, strong motion record, pier height and earthquake acceleration on the seismic capability of high-speed bridge subjected to different strength of the earthquake, the finite element soft ware and moment-curvature program were employed to calculate the earthquake responses of bridge. The calculation results show that, with the increase of train speed, pier height and earthquake intensity, the earthquake responses of bridge are increase in general, and the bottom of piers step into states of elastic-plasticity under high-level earthquake, elastic-plastic deformation is larger, the stirrup encryption measures should be carried out.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhipeng Lai ◽  
Xin Kang ◽  
Lizhong Jiang ◽  
Wangbao Zhou ◽  
Yulin Feng ◽  
...  

Rail irregularity is the leading cause of enhancing train-track coupling vibration and, therefore, should be studied in detail for safety requirements. In this study, the differences between existing rail irregularities without being subjected to an earthquake between different countries were first studied. Results show that existing power spectrum density and time-domain displacement samples of rail irregularities in the American code are the largest, while the irregularities of the Germany railway are higher than those of China in a specific range of rail wavelengths. Afterward, the effects of earthquake intensity, soil site, and duration on the rail irregularity of a Chinese typical high-speed railway bridge were investigated. For this purpose, a finite element model was established and validated by the shaking table test of a 1/12-scaled high-speed railway bridge experimental specimen. The calculation results indicated that the influences of earthquakes on the rail alignment irregularity were evident.


2011 ◽  
Vol 42 (10) ◽  
pp. 15-21 ◽  
Author(s):  
Lingkun Chen ◽  
Lizhong Jiang ◽  
Zhiping Zeng ◽  
Weiguo Long

In this paper, the responses of high-speed railway bridge subjected to seismic load were investigated by numerical simulation. Elastic deformation will occur in the bridge system under low-level earthquake; however, the bridge system may enter a nonlinear stage under high-level earthquake. The whole finite element model of the bridge system was set up by means of ANSYS software and self-compiled moment-curvature relationship program, the elastic seismic responses of bridge system and the elastic-plastic deformation of piers considering different vehicle speeds are calculated respectively. The calculation results show that, the earthquake responses of bridge system are increase in general with the increase of vehicle speed and earthquake intensity, and the bottom of piers step into elastic-plasticity stage under high-level earthquake, the plastic hinges occurred at the pier bottom, the pier bottom step into the plastic stage, some measures such as lateral reinforced steel encryption should be taken into account to ensure safety.


2017 ◽  
Vol 21 (5) ◽  
pp. 643-657 ◽  
Author(s):  
Biao Wei ◽  
Tianhan Yang ◽  
Lizhong Jiang ◽  
Xuhui He

The fixed bearings of high-speed railway continuous bridges were vulnerable during earthquakes, since they transferred most of the seismic force between the superstructure and the piers. A type of friction-based fixed bearing was used and would slide during strong earthquakes. The influence of this sliding friction action on the seismic vulnerability curves of different components in the track-bridge system was analyzed in this article. Results show that the sliding friction action of the fixed bearings can protect other components from severe damage under earthquakes. This phenomenon is more significant when the friction coefficient on the friction-based fixed bearings is reduced. However, it increases the seismic relative displacement of the fixed bearings themselves. Finally, a sufficiently large displacement capacity and an appropriate friction coefficient between 0.2 and 0.3 are almost the best combination for the friction-based fixed bearings, which can effectively protect all components of the track-bridge system, including the track structure, piers, piles, and friction-based fixed bearings themselves.


2012 ◽  
Vol 132 (10) ◽  
pp. 673-676
Author(s):  
Takaharu TAKESHITA ◽  
Wataru KITAGAWA ◽  
Inami ASAI ◽  
Hidehiko NAKAZAWA ◽  
Yusuke FURUHASHI

Sign in / Sign up

Export Citation Format

Share Document