displacement capacity
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 44)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Bayi Bage

Abstract: ETABS Stand for Extended Three-Dimensional Analysis of Building systems. ETABS integrates every aspect of the engineering design process. In the present situations of construction industry, the buildings that are being constructed are gaining significance, in general those with the best possible outcomes which are referred to members like beams and columns in multi storeys R.C structures. This paper deals with the seismic analysis of regular B+G+26 story building with shear wall and G+B+10 Story building with different irregular shapes considering different shapes of shear wall at different locations has been carried out. Which can be done in ETABS taking all the considerations regarding codes and other factors into account. All the buildings were analyzed with the same method as stated in IS 1893-Part-1:2016. The effect of shear walls on lateral capacity of the building are examined because the seismic analysis of a frame depends upon the location and symmetry of shear wall. Present study shows the shear wall improves not only the lateral stiffness and strength capacity but also the displacement capacity of structure. Comparison of results been done of different models by comparing the parameters such as story drift, story displacement, story stiffness and base reaction. Therefore, as far as possible irregularities in a building must be avoided. But, if irregularities have to be introduced for any reason, they must be designed properly following the conditions of IS 13920:1993. The complex shaped buildings are now days getting popular, but they carry a risk of sustaining damages during earthquakes. Keywords ETABS Software; IS Code 1892-Part-1:2016; IS Code 13920:1993; IS Code 875-Part-1 and Part-2


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 499
Author(s):  
Duc-Vu Ngo ◽  
Young-Jin Kim ◽  
Dong-Hyawn Kim

This study proposed a new suction bucket (SB) foundation model for offshore wind turbines (OWT) suitable for a shallow muddy seabed, using more than three single buckets through kinetic derivation. The performance of new optimal foundation was evaluated by its horizontal displacement capacity and compared with a conventional SB composed of three buckets. Under external loads such as earthquakes, wind, and the combination of the both, the stability of this novel SB foundation was verified. The seismic fragility curve was also evaluated at some scour depths. These results were compared with the response of a tripod suction bucket (TSB) foundation, which was also designed for a shallow muddy seabed. The results indicated that scour significantly changed the dynamic response of this novel SB foundation but it had a better bearing capacity than the TSB foundation, despite its smaller size and weight. The fragility of TSB is always higher than the developed foundation in the same environmental condition. With reasonable volume and size, this novel SB foundation has great potential for future industrialization and commercialization.


Author(s):  
Anaïs Degut ◽  
Klaus Fischer ◽  
Martin Quque ◽  
François Criscuolo ◽  
Peter Michalik ◽  
...  

Within populations, phenotypic plasticity may allow adaptive phenotypic variation in response to selection generated by environmental heterogeneity. For instance, in multivoltine species, seasonal changes between and within generations may trigger morphological and physiological variation enhancing fitness under different environmental conditions. These seasonal changes may irreversibly affect adult phenotypes when experienced during development. Yet, the irreversible effects of developmental plasticity on adult morphology have rarely been linked to life-history traits even though they may affect different fitness components such as reproduction, mobility and self-maintenance. To address this issue, we raised larvae of Pieris napi butterflies under warm or cool conditions to subsequently compare adult performance in terms of reproduction performance (as assessed through fecundity), displacement capacity (as assessed through flight propensity and endurance) and self-maintenance (as assessed through the measurement of oxidative markers). As expected in ectotherms, individuals developed faster under warm conditions and were smaller than individuals developing under cool conditions. They also had more slender wings and showed a higher wing surface ratio. These morphological differences were associated with changes in the reproductive and flight performances of adults, as individuals developing under warm conditions laid fewer eggs and flew larger distances. Accordingly, the examination of their oxidative status suggested that individuals developing under warm conditions invested more strongly into self-maintenance than individuals developing under cool conditions (possibly at the expense of reproduction). Overall, our results indicate that developmental conditions have long-term consequences on several adult traits in butterflies. This plasticity likely acts on life history strategies for each generation to keep pace with seasonal variations and may facilitate acclimation processes in the context of climate change.


2021 ◽  
Vol 11 (24) ◽  
pp. 11711
Author(s):  
Raihan Rahmat Rabi ◽  
Marco Vailati ◽  
Giorgio Monti

A simplified pushover method for rapidly assessing the seismic capacity of shear-type frames is presented. The frame global force-displacement capacity is described as a trilinear curve passing through three limit states (LS): Damage LS (DLS), Life safety LS (LLS), and Collapse LS (CLS). The global LSs are obtained consequently to the attainment of story-level, element-level, and section-level LSs. All LS capacities are described through closed-form equations. The validity of the proposed method is verified by applying it on several reinforced concrete (RC) frames with a varying number of stories. The results obtained with such an analytical procedure show a good match with those obtained from pushover based on finite element method (FEM) analysis models, in terms of both global force-displacement capacity curves and story displacements at various LSs. The proposed method has the potential to be conveniently applied in large-scale vulnerability/risk assessment studies, where the quality and quantity of the available data call for the use of simplified yet accurate models. More refined models would in fact require significantly heavier computational efforts, not justified by the quality of the results that are usually obtained. The simplicity of the proposed method in such a context is demonstrated through the development of the fragility curves of a five-story shear-type reinforced concrete frame, starting from a predefined set of mechanical and geometrical features characterizing a building typology.


Author(s):  
Naveed Ahmad ◽  
Arifullah ◽  
Babar Ilyas ◽  
Sida Hussain

Experimental and numerical studies are presented evaluating the efficacy of a recycling technique applied to a 1:3 reduced scale damaged RC frame. The crumbled concrete at the beam-column connections was replaced with new high-strength concrete. Epoxy mortar was applied at the interface to secure bonding between the old and new concrete. Additionally, the connections were provisioned with steel haunches, applied below and above the beams. The retrofitted frame was tested under quasi-static cyclic loads. The lateral resistance-displacement hysteretic response of the tested frame was obtained to quantify hysteretic damping, derive the lateral resistance-displacement capacity curve, and develop performance levels. The technique improved the response of the frame; exhibiting an increase in the lateral stiffness, resistance and post-yield stiffness of the frame in comparison to the undamaged original frame. This good behaviour is attributed to the steel haunches installed at connections. A representative numerical model was calibrated in the finite element program SeismoStruct. A set of spectrum compatible ground motions were input to the numerical model for response history analysis. The story drift demands were computed for both the design basis and maximum considered earthquakes. Moreover, the technique was extended to a five-story frame, which was evaluated through nonlinear static pushover and response history analyses. Overstrength factor WR = 4.0 is proposed to facilitate analysis and preliminary design of steel haunches and anchors for retrofitting the low-/mid-rise RC frames.


Author(s):  
Sneha Nair M D

Abstract: Hollow Concrete Columns (HCCs) are one of the preferred construction systems in civil infrastructures including bridge piers, ground piles, and utility poles to minimize the overall weight and costs. HCCs are also considered a solution to increase the strength to mass ratio of structures. However, HCCs are subjected to brittle failure behaviour by concrete crushing means that the displacement capacity and the strength after steel yielding in HCCs are decreasing due to the unconfined concrete core. Absence of the concrete core changes the inner stress formation in HCCs from triaxial to biaxial causes lower strength. A new type of Hollow Composite Reinforcing System (HCRS) has recently been designed and developed to create voids in structural members. This reinforcing system has four external flanges to facilitate mechanical bonding and interaction with concrete. Therefore, providing the inner Hollow Composite Reinforced Sections (HCRS) can significantly increase strength by providing a higher reinforcement ratio and confining the inner concrete core triaxially. The corrosion of steel is also a notable factor in the case of steel reinforced HCCs which became more critical because their outer and inner surfaces exposing more concrete surface area. An alternative reinforcement is Glass Fibre Reinforced Polymer (GFRP) bars, can overcome the brittle behaviour of steel reinforced HCC. In previous studies, HCC shows high strength capacity, when appropriate reinforcement in the form of longitudinal GFRP bars, laterally using GFRP spirals and internally using rectangular HCRS which provide enough inner confinement. However, the spirals laterally restrict the expansion of the concrete core and limit the buckling of the longitudinal bars, allowing the columns to keep resisting applied loads and gives maximum strength. Therefore, in this study, the spirals are replaced by discrete hoops as lateral reinforcement to analyse the effect on structural behaviour of HCC reinforced with rectangle shaped HCRS under axial load using ANSYS software. The results show that column laterally reinforced with spiral attained insignificant increase in strength than their counterpart specimens confined with hoops. So, the circular hoops were found to be as efficient in confining concrete as spirals in a column reinforced internally with rectangle shaped HCRS. The increase in volumetric ratio can be achieved by reducing the spacing between lateral reinforcement. So, this study also investigates the effectiveness of reducing the spiral spacing in HCC reinforced with HCRS, three models with lateral spacing of 50mm, 40mm and 30mm are modelled and analysed. The results show that columns with closer spiral spacing attained more axial stability. Keywords: Hollow Concrete Column, Rectangular Hollow Composite Reinforced Sections, GFRP Spirals, GFRP Hoops, Nonlinear Static Analysis, ANSYS.


Author(s):  
Shoma Kitayama ◽  
Huseyin Cilsalar

AbstractThis paper investigates the seismic loss assessment of seismically isolated and non-isolated buildings with steel moment or braced frames, designed by the seismic design standard of ASCE/SEI 7-16. The seismic loss is calculated from the damage to structural and non-structural components, as well as the demolition and the collapse of buildings. This study demonstrates that the expected annual losses for seismically isolated buildings are half or less than half of those calculated for non-isolated buildings. These losses depend on the types of seismic isolation systems and seismic force resisting systems used. Among the cases of isolated buildings studied in this paper, the most cost-effective systems are found to be the buildings designed by minimum strength requirement in ASCE/SEI 7-16 and with isolators which have displacement capacity 1.5 times larger than the minimum required in ASCE/SEI 7-16, in terms of expected annual losses. This study also compares the results obtained from different approaches of selection and scaling of ground motions. The following research finds that when Incremental Dynamic Analysis approach with far-field ground motion set in FEMA P695 is used, the computed expected total annual losses become doubled from the Conditional Spectra approach.


Author(s):  
Ahmet Güllü ◽  
Josiah Owusu Danquah ◽  
Savaş Dilibal

Abstract Earthquake-resistant design of structures requires dissipating seismic energy by deformations of structural members or additional fuse elements. Owing to its easy-to-produce, plug-and-play, high equivalent damping ratio, and large displacement capacity characteristics, energy dissipative steel cushions were found to be an efficient candidate for this purpose. However, similar to other conventional metallic dampers, residual displacement after a strong shaking is the most notable drawback of the steel cushions. In this work, cushions produced from Ni-Ti shape memory alloy are evaluated numerically by experimentally verified finite element models to assess their impact on the performance of earthquake-resistant structures. Furthermore, a reinforced concrete testing frame is retrofitted with energy dissipative steel and Ni-Ti cushions. Performance of the frames (e.g. dissipated energy by the cushions, hysteretic energy to input energy ratio, maximum drift, and residual drift) with different types of cushions are evaluated by nonlinear response history analyses. The numerical results showed that the steel cushions are effective to reduce peak responses, while Ni-Ti cushions are more favorable to reduce residual drifts and deformations. Hence, a hybrid system, employing the steel and shape memory alloy cushions together, is proposed to reach optimal seismic performance.


Author(s):  
Sneha Nair M D

Abstract: Hollow Concrete Columns (HCCs) are one of the preferred construction systems in civil infrastructures including bridge piers, ground piles, and utility poles to minimize the overall weight and costs. HCCs are also considered a solution to increase the strength to mass ratio of structures. However, HCCs are subjected to brittle failure behaviour by concrete crushing means that the displacement capacity and the strength after steel yielding in HCCs are decreasing due to the unconfined concrete core. Absence of the concrete core changes the inner stress formation in HCCs from triaxial to biaxial causes lower strength. A new type of Hollow Composite Reinforcing System (HCRS) has recently been designed and developed to create voids in structural members. This reinforcing system has four external flanges to facilitate mechanical bonding and interaction with concrete. Therefore, providing the inner Hollow Composite Reinforced Sections (HCRS) can significantly increase strength by providing a higher reinforcement ratio and confining the inner concrete core triaxially. The corrosion of steel is also a notable factor in the case of steel reinforced HCCs which became more critical because their outer and inner surfaces exposing more concrete surface area. An alternative reinforcement is Glass Fibre Reinforced Polymer (GFRP) bars, can overcome the brittle behaviour of steel reinforced HCC. In previous studies, HCC shows high strength capacity, when appropriate reinforcement in the form of longitudinal GFRP bars, laterally using GFRP spirals and internally using newly developed HCRS which provide enough inner confinement. Therefore, this study aims to determine the effect of HCRS of different cross sections and also the effect of change in position of its flanges on the axial performance of HCC analytically using ANSYS software. Keywords: Hollow Concrete Column, Hollow Composite Reinforced Sections, GFRP bars, GFRP Spirals, Nonlinear Static Analysis, ANSYS.


Author(s):  
Ahmet Güllü ◽  
Seda Göktepe Körpeoğlu

Current practice in structural engineering requires dissipating some part of seismic energy by sacrificial elements rather than structural members and/or joints. As an easy-to-produce and plug-and-play damper with stable hysteretic loops and large displacement capacity, steel cushion (SC) is a significant device to improve the seismic performance of the structures. It was stated in the previous studies that SC is less effective in the transversal direction. Hence, the efficiency of the damper is improved by optimal sizing through intelligent optimization techniques in this study. The complex optimization problem could be converted to a relatively simple mathematical problem since closed-form equations of the damper are exist in the literature. The optimal sizing problem was solved using two distinct methods namely the [Formula: see text]-constraint method and the elitist non-dominated sorting genetic algorithm (NSGA-II). The employed optimization methods were verified by each other as almost similar geometric ratios were obtained. The efficiency of the optimization is evaluated through finite element analysis (FEA). It is shown that the optimally sized SC is superior in terms of energy dissipation.


Sign in / Sign up

Export Citation Format

Share Document